Concept explainers
(a)
The angle between the initial velocity vector of the proton beam and the velocity vector after the beam emerges from the field.
(a)
Answer to Problem 78CP
The angle between the initial velocity vector of the proton beam and the velocity vector after the beam emerges from the field is
Explanation of Solution
Consider the free body diagram of the particle as shown below.
Figure-(1)
Write the expression to calculate the initial velocity of the proton.
Here,
Write the expression to calculate the final velocity of the proton.
Here,
Write the expression to calculate the angle between the velocity.
Conclusion:
Substitute
Substitute
Substitute
Therefore, the angle between the initial velocity vector of the proton beam and the velocity vector after the beam emerges from the field is
(b)
The y component of the protons momentum as they leave the magnetic field.
(b)
Answer to Problem 78CP
The y component of the protons momentum as they leave the magnetic field is
Explanation of Solution
Write the expression to calculate the velocity in x direction.
Here,
Write the expression to calculate time required by the proton to travel.
Here,
Write the expression to calculate the acceleration of the proton.
Here,
Write the expression to calculate the velocity in the y direction.
Here,
Write the expression to calculate the momentum.
Here,
Conclusion:
Substitute
Substitute
Substitute
Substitute
Substitute
Therefore, the y component of the protons momentum as they leave the magnetic field is
Want to see more full solutions like this?
Chapter 29 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- A proton moving in the plane of the page has a kinetic energy of 6.00 MeV. A magnetic field of magnitude H = 1.00 T is directed into the page. The proton enters the magnetic field with its velocity vector at an angle = 45.0 to the linear boundary of' the field as shown in Figure P29.80. (a) Find x, the distance from the point of entry to where the proton will leave the field. (b) Determine . the angle between the boundary and the protons velocity vector as it leaves the field.arrow_forwardIn Niels Bohr’s 1913 model of the hydrogen atom, the single electron is in a circular orbit of radius 5.29 × 10−11 m and its speed is 2.19 × 106 m/s. (a) What is the magnitude of the magnetic moment due to the electron’s motion? (b) If the electron moves in a horizontal circle, counterclockwise as seen from above, what is the direction of this magnetic moment vector?arrow_forwardIn Figure P22.43, the current in the long, straight wire is I1 = 5.00 A and the wire lies in the plane of the rectangular loop, which carries a current I2 = 10.0 A. The dimensions in the figure are c = 0.100 m, a = 0.150 m, and = 0.450 m. Find the magnitude and direction of the net force exerted on the loop by the magnetic field created by the wire. Figure P22.43 Problems 43 and 44.arrow_forward
- A magnetic field directed into the page changes with time according to B = 0.030 0t2 + 1.40, where B is in teslas and t is in seconds. The field has a circular cross section of radius R = 2.50 cm (see Fig. P23.28). When t = 3.00 s and r2 = 0.020 0 m, what are (a) the magnitude and (b) the direction of the electric field at point P2?arrow_forwardAn electron in a TV CRT moves with a speed of 6.0107 m/s, in a direction perpendicular to Earth's field, which has a strength of 5.0105 T. (a) What strength electric field must be applied perpendicular to the Earth’s field to make the election moves in a straight line? (b) If this is done between plates separated by 1.00 cm, what is the voltage applied? (Note that TVs are usually surrounded by a ferromagnetic material to shield against external magnetic fields and avoid the need for such a collection,)arrow_forwardOne long wire carries current 30.0 A to the left along the x axis. A second long wire carries current 50.0 A to the right along the line (y = 0.280 m, z = 0). (a) Where in the plane of the two wires is the total magnetic field equal to zero? (b) A particle with a charge of 2.00 C is moving with a velocity of 150iMm/s along the line (y = 0.100 m, z = 0). Calculate the vector magnetic force acting on the particle. (c) What If? A uniform electric field is applied to allow this particle to pass through this region undetected. Calculate the required vector electric field.arrow_forward
- Consider an electron rotating in a circular orbit of radius r. Show that the magnitudes of the magnetic dipole moment and the angular momentum L of the electron are related by: = L=e2marrow_forwardAssume the region to the right of a certain plane contains a uniform magnetic field of magnitude 1.00 mT and the field is zero in the region to the left of the plane as shown in Figure P22.71. An electron, originally traveling perpendicular to the boundary plane, passes into the region of the field. (a) Determine the time interval required for the electron to leave the field-filled region, noting that the electrons path is a semicircle. (b) Assuming the maximum depth of penetration into the field is 2.00 cm, find the kinetic energy of the electron.arrow_forwardAn electron moves in a circular path perpendicular to a magnetic field of magnitude 0.280 T. If the kinetic energy of the electron is 2.60 x 10-19 J, find the speed of the electron and the radius of the circular path. (a) the speed of the electron X Your response differs from the correct answer by more than 10%. Double check your calculations. m/s (b) the radius of the circular path X Your response differs from the correct answer by more than 10%. Double check your calculations. μmarrow_forward
- Q. 3: A proton moves through a uniform magnetic field given by B = (30 î – 20j) mT. At a time ti, the proton has a velocity given by v = (Vx î + (2000m/s)ĵ ) and the magnetic force of the proton is FB = (4 * 10-17N) k. At that instant, what is the velocity vx? %3Darrow_forwardAn electron enters the region between two plates traveling along the x-direction with a speed of v = 4.78 x 106 m/s. Both plates are parallel to the x-y plane and are separated by 4.5 cm. The potential of the top plate at z = 4.5 cm is +100 V while the potential of the bottom plate at z = 0 cm is 0 V. What is the direction of the magnetic field between the plates that is required so that the electron continues traveling in a straight line along the x-direction in this region?arrow_forwardA particle with positive charge q = 3.52 x 1018 C moves with a velocity v = (5î + 4ĵ – k) m/s through a region where both a uniform magnetic field and a uniform electric field exist. (a) Calculate the total force on the moving particle, taking B = (3î + 2ĵ + k) T and E = (3î - j - 2k) V/m. (Give your answers in N for each component.) Ey = Ey = F, = (b) What angle does the force vector make with the positive x-axis? (Give your answer in degrees counterclockwise from the +x-axis.) ° counterclockwise from the +x-axis (c) What If? For what vector electric field would the total force on the particle be zero? (Give your answers in V/m for each component.) E, = V/m E, = V/m E, = V/marrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning