
Concept explainers
(a)
The expression for the time constant for this circuit.
(a)

Answer to Problem 74PQ
The expression for the time constant is
Explanation of Solution
Write the expression for the equivalent resistance for this circuit as.
Here,
Write the expression for the time constant for the circuit parameter.
Here,
Conclusion:
Substitute
Thus, the expression for the time constant is
(b)
The expression for the time when the capacitor has lost half of its charge.
(b)

Answer to Problem 74PQ
The expression for the time when the capacitor has lost half of its charge is
Explanation of Solution
Write the expression for the charge store in capacitor as.
Here,
Write the expression for the initial charge stored in capacitor as.
Here,
Write the expression for voltage across capacitor as a function of time as.
Here,
Conclusion:
Substitute
Substitute
Substitute
Thus, the expression for the time when the capacitor has lost half of its charge is
(c)
The expression for the current through the capacitor at that time.
(c)

Answer to Problem 74PQ
The expression for the current through the capacitor at that time is
Explanation of Solution
Write the expression current through the capacitor at time
Conclusion:
Substitute
Substitute
Thus, the expression for the current through the capacitor at that time is
Want to see more full solutions like this?
Chapter 29 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- RT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unitarrow_forward7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forwardганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College





