Conceptual Integrated Science
3rd Edition
ISBN: 9780135197394
Author: Hewitt, Paul G., LYONS, Suzanne, (science Teacher), Suchocki, John, Yeh, Jennifer (jennifer Jean)
Publisher: PEARSON EDUCATION (COLLEGE)
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 29, Problem 73TE
To determine
The phenomena that keep the main sequence star from collapsing.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Describe the forces acting on a star during the main sequence period of its life?
QUESTION 16
Use the figure shown below to complete the following statement: A low-mass protostar (0.5 to 8M the mass compared to our sun) remains roughly constant in
decreases in
until it makes a turn towards the main sequence, as it follows its evolutionary track.
Protostars of different masses follow diferent
paths on their way to the main sequence.
107
Luminosity (L)
10
105
10
107
10²
101
1
10-1
10-2
10-3
Spectral
type
0.01 R
0.001
Re
60 M
MAIN SEQUENCE
40,000 30,000
20 Mau
10 Mgun
5 Mun
0.1 Run
Ren
radius; temperature
luminosity; radius
3 Min.
05 BO
temperature; luminosity
Oluminosity: temperature
radius: luminosity
1 M
10,000 6000
Surlace temperature (K)
1,000 Rs
2 M STAR
L
0.8 M
B5 AO FOGO КБ МБ
-10
+10
3000
Absolute visual magnitude
and
What causes a star to move off the main sequence?
Chapter 29 Solutions
Conceptual Integrated Science
Ch. 29 - Why does an observer at a given location see one...Ch. 29 - Prob. 2RCCCh. 29 - Is the light-year a measurement of time or...Ch. 29 - Prob. 4RCCCh. 29 - Prob. 5RCCCh. 29 - What is an H-R diagram?Ch. 29 - Prob. 7RCCCh. 29 - Prob. 8RCCCh. 29 - Prob. 9RCCCh. 29 - Prob. 10RCC
Ch. 29 - Prob. 11RCCCh. 29 - Prob. 12RCCCh. 29 - Why don't we think the Sun will eventually become...Ch. 29 - If black holes are invisible, what is the evidence...Ch. 29 - What type of galaxy is the Milky Way?Ch. 29 - What is a starburst galaxy?Ch. 29 - How many spiral galaxies are in our Local Group?Ch. 29 - Is the universe in space, or is space in the...Ch. 29 - Prob. 19RCCCh. 29 - What is the approximate age of the universe?Ch. 29 - If we cant see dark matter, how do we know it is...Ch. 29 - What does WMAP stand for?Ch. 29 - Which is more abundantdark matter or ordinary...Ch. 29 - Why is the Drake equation limited to our galaxy?Ch. 29 - Which variable within the Drake equation make the...Ch. 29 - Prob. 28TCCh. 29 - Prob. 29TCCh. 29 - Prob. 30TCCh. 29 - Prob. 31TCCh. 29 - Rank the nuclear fuels in order of being consumed,...Ch. 29 - Rank in order of increasing size: a solar system,...Ch. 29 - Rank these elements in order of increasing...Ch. 29 - Rank the following in order of increasing...Ch. 29 - Prob. 36TSCh. 29 - If you were to travel straight up from the core of...Ch. 29 - Prob. 38TSCh. 29 - Prob. 39TSCh. 29 - Prob. 40TSCh. 29 - When can winter constellations be seen in the...Ch. 29 - Prob. 42TECh. 29 - On the Moon, stars other than the Sun can be seen...Ch. 29 - We see the constellations as distinct groups of...Ch. 29 - Distinguish between the daily and intrinsic motion...Ch. 29 - Which moves faster from horizon to horizon: the...Ch. 29 - Prob. 47TECh. 29 - Why does the Big Dipper change its position in the...Ch. 29 - Prob. 49TECh. 29 - Prob. 50TECh. 29 - Prob. 51TECh. 29 - Prob. 52TECh. 29 - Why dont we see the ultraviolet color of stars?Ch. 29 - Does a blue star contain yellow light?Ch. 29 - Does a yellow star contain blue light?Ch. 29 - Prob. 56TECh. 29 - Prob. 57TECh. 29 - Prob. 58TECh. 29 - Prob. 59TECh. 29 - Prob. 60TECh. 29 - Prob. 61TECh. 29 - Prob. 62TECh. 29 - Prob. 63TECh. 29 - Prob. 64TECh. 29 - Prob. 65TECh. 29 - Prob. 66TECh. 29 - Prob. 67TECh. 29 - Prob. 68TECh. 29 - Prob. 69TECh. 29 - Prob. 70TECh. 29 - Prob. 71TECh. 29 - Prob. 72TECh. 29 - Prob. 73TECh. 29 - Prob. 74TECh. 29 - Prob. 75TECh. 29 - Prob. 76TECh. 29 - Prob. 77TECh. 29 - Prob. 78TECh. 29 - What happens to a light beam bouncing between two...Ch. 29 - Prob. 80TECh. 29 - Prob. 81TECh. 29 - Prob. 82TECh. 29 - Prob. 83TECh. 29 - Prob. 84TECh. 29 - Are there other galaxies other than the Milky Way...Ch. 29 - Prob. 86TECh. 29 - Draw an analogy between a galaxy and a forest.Ch. 29 - Draw an analogy between a galaxy and a swarm of...Ch. 29 - How would finding microbial nonterrestrial life on...Ch. 29 - Prob. 90TECh. 29 - What is SETI? Was it a mistake for Congress to cut...Ch. 29 - Prob. 92TECh. 29 - Where did the Big Bang occur?Ch. 29 - When was most of the helium in the universe...Ch. 29 - What does the expansion of space do to light...Ch. 29 - A police officer pulls you over for speeding. He...Ch. 29 - If the universe remained hotter for a longer...Ch. 29 - No galaxy found so far is made of less than 25...Ch. 29 - Are astronomers able to point their telescopes in...Ch. 29 - A helium balloon here on Earth pops, releasing...Ch. 29 - Prob. 101TECh. 29 - Prob. 102TECh. 29 - Early astronomers such as Kepler and Newton...Ch. 29 - What force allows dark matter to clump?Ch. 29 - Why doesn't dark matter clump together as...Ch. 29 - If dark matter is affected by gravity, might there...Ch. 29 - What is one important difference between dark...Ch. 29 - The y-axis in the largest graph for Figure 29.47...Ch. 29 - Prob. 109TECh. 29 - Prob. 110TECh. 29 - Compare and contrast astronomy and astrology.Ch. 29 - Project what human civilization would be like if...Ch. 29 - Why is it important to have a science-based...Ch. 29 - Compare and contrast the Big Bang with a black...Ch. 29 - Prob. 115TDICh. 29 - Summer and winter constellations are different...Ch. 29 - Prob. 2RATCh. 29 - Prob. 3RATCh. 29 - Prob. 4RATCh. 29 - Prob. 5RATCh. 29 - Prob. 6RATCh. 29 - Prob. 7RATCh. 29 - Scientists estimate the age of our universe to be...Ch. 29 - Which of the following is not accepted evidence...Ch. 29 - Prob. 10RAT
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The mass-luminosity relation describes the mathematical relationship between luminosity and mass for main sequence stars. It describes how a star with a mass of 4 M⊙ would have a luminosity of ______ L⊙. If a star has a radius 1/2 that of the Sun and a temperature 4 that of the Sun, how many times higher is the star's luminosity than that of the Sun? (If it is smaller by a factor of 8, you would write 0.125 because 1/8=0.125) If a star has a radius 2 times larger than the Sun's and a luminosity 1/4th that of the Sun, how many times higher is the star's temperature than that of the Sun? (If it is smaller by a factor of 8, you would write 0.125 because 1/8=0.125) If a star has a surface temperature 2 times lower than the Sun's and a luminosity the same as the Sun, how many times larger is the star than the Sun? (If it is smaller by a factor of 8, you would write 0.125 because 1/8=0.125)arrow_forwardA red giant star might have radius = 104 times the solar radius, and luminosity = 1730 times solar luminosity. Use the data given below to calculate the temperature at the surface of the red giant star. Data: solar radius R = 7 x 108 meters solar luminosity L = 4 x 1026 watts Stefan-Boltzmann constant a = 5.67 x 10-8 W m² K-4 (in K) A: 1226 OB: 1434 OC: 1678 OD: 1963 OE: 2297 OF: 2688 OG: 3145 OH: 3679arrow_forwardArrange the following stars in order of their evolution: A. A star with no nuclear reactions going on in the core, which is made primarily of carbon and oxygen. B. A star of uniform composition from center to surface; it contains hydrogen but has no nuclear reactions going on in the core. C. A star that is fusing hydrogen to form helium in its core. D. A star that is fusing helium to carbon in the core and hydrogen to helium in a shell around the core. E. A star that has no nuclear reactions going on in the core but is fusing hydrogen to form helium in a shell around the core.arrow_forward
- According to the text, a star must be hotter than about 25,000 K to produce an H II region. Both the hottest white dwarfs and main-sequence O stars have temperatures hotter than 25,000 K. Which type of star can ionize more hydrogen? Why?arrow_forwardAre supergiant stars also extremely massive? Explain the reasoning behind your answer.arrow_forwardYou have discovered two star clusters. The first cluster contains mainly main-sequence stars, along with some red giant stars and a few white dwarfs. The second cluster also contains mainly main-sequence stars, along with some red giant stars, and a few neutron stars-but no white dwarf stars. What are the relative ages of the clusters? How did you determine your answer?arrow_forward
- The text says a star does not change its mass very much during the course of its main-sequence lifetime. While it is on the main sequence, a star converts about 10% of the hydrogen initially present into helium (remember it’s only the core of the star that is hot enough for fusion). Look in earlier chapters to find out what percentage of the hydrogen mass involved in fusion is lost because it is converted to energy. By how much does the mass of the whole star change as a result of fusion? Were we correct to say that the mass of a star does not change significantly while it is on the main sequence?arrow_forwardA star begins its life with a mass of 5 MSunbut ends its life as a white dwarf with a mass of 0.8 MSun. List the stages in the star’s life during which it most likely lost some of the mass it started with. How did mass loss occur in each stage?arrow_forwardIf you were to compare three stars with the same surface temperature, with one star being a giant, another a supergiant, and the third a main-sequence star, how would their radii compare to one another?arrow_forward
- Describe the evolution of a star with a mass like that of the Sun, from the main-sequence phase of its evolution until it becomes a white dwarf.arrow_forwardIn the HR diagrams for some young clusters, stars of both very low and very high luminosity are off to the right of the main sequence, whereas those of intermediate luminosity are on the main sequence. Can you offer an explanation for that? Sketch an HR diagram for such a cluster.arrow_forwardHow do the two types of supernovae discussed in this chapter differ? What kind of star gives rise to each type?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning