MASTERPHYS:KNIGHT'S PHYSICS ACCESS+WKB
4th Edition
ISBN: 9780135245033
Author: Knight
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 29, Problem 6CQ
What is the initial direction of deflection for the charged particles entering the magnetic fields shown in FIGURE Q29.6?
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 29 Solutions
MASTERPHYS:KNIGHT'S PHYSICS ACCESS+WKB
Ch. 29 - The lightweight glass sphere in FIGURE Q29.1 hangs...Ch. 29 - The metal sphere in FIGURE Q29.2 hangs by a...Ch. 29 - Prob. 3CQCh. 29 - Prob. 4CQCh. 29 - What is the current direction in the wire of...Ch. 29 - What is the initial direction of deflection for...Ch. 29 - What is the initial direction of deflection for...Ch. 29 - Determine the magnetic field direction that causes...Ch. 29 - Determine the magnetic field direction that causes...Ch. 29 - Prob. 10CQ
Ch. 29 - The south pole of a bar magnet is brought toward...Ch. 29 - Prob. 12CQCh. 29 - Prob. 1EAPCh. 29 - Prob. 2EAPCh. 29 - 3. A proton moves along the x-axis with rn/s. As...Ch. 29 - An electron moves along the z-axis with vz=2.0107...Ch. 29 - What is the magnetic field at the position of the...Ch. 29 - What is the magnetic field at the position of the...Ch. 29 - Prob. 7EAPCh. 29 - Prob. 8EAPCh. 29 - Prob. 9EAPCh. 29 - A biophysics experiment uses a very sensitive...Ch. 29 - The magnetic field at the center of a 1.0...Ch. 29 - 12. What are the magnetic fields at points a to c...Ch. 29 - Prob. 13EAPCh. 29 - What are the magnetic field strength and direction...Ch. 29 - Prob. 15EAPCh. 29 - 16. The on-axis magnetic field strength cm from...Ch. 29 - A A current circulates around a -mm-diameter...Ch. 29 - 18. A small, square loop carries a A current. The...Ch. 29 - Prob. 19EAPCh. 29 - 20. What is the line integral of integral points...Ch. 29 - 21. What is the line integral of between points i...Ch. 29 - The value of the line integral of around the...Ch. 29 - 23. The value of the line integral of around the...Ch. 29 - 24. What is the line integral of between points i...Ch. 29 - Prob. 25EAPCh. 29 - 26. A proton moves in the magnetic field with a...Ch. 29 - Prob. 27EAPCh. 29 - 28. Radio astronomers detect electromagnetic...Ch. 29 - Prob. 29EAPCh. 29 - Prob. 30EAPCh. 29 - The microwaves in a microwave oven are produced in...Ch. 29 - The Hall voltage across a conductor in a 55mT...Ch. 29 - 33. What magnetic field strength and direction...Ch. 29 - 34. The two -cm-long parallel wires in FIGURE...Ch. 29 - The right edge of the circuit in FIGURE EX29.35...Ch. 29 - Prob. 36EAPCh. 29 - Prob. 37EAPCh. 29 - 38. A square current loop cm on each side carries...Ch. 29 - Prob. 39EAPCh. 29 - 40. a. What is the magnitude of the torque on the...Ch. 29 - A long wire carrying a 5.0A current perpendicular...Ch. 29 - Prob. 42EAPCh. 29 - What are the strength and direction of the...Ch. 29 - At what distance on the axis of a current loop is...Ch. 29 - 45. Find an expression for the magnetic field...Ch. 29 - Prob. 46EAPCh. 29 - Prob. 47EAPCh. 29 - 48. A -m-long, -mm-diameter aluminum wire has a...Ch. 29 - Prob. 49EAPCh. 29 - Prob. 50EAPCh. 29 - Prob. 51EAPCh. 29 - Weak magnetic fields can be measured at the...Ch. 29 - The heart produces a weak magnetic field that can...Ch. 29 - Prob. 54EAPCh. 29 - 55. The toroid of FIGURE P29.55 is a coil of wire...Ch. 29 - 56. The coaxial cable shown in FIGURE P29.56...Ch. 29 - 57. A long, hollow wire has inner radius and...Ch. 29 - 58. A proton moving in a uniform magnetic field...Ch. 29 - 59. An electron travels with speed m/s between...Ch. 29 - Prob. 60EAPCh. 29 - An antiproton (same properties as a proton except...Ch. 29 - a. A 65 -cm-diameter cyclotron uses a 500 V...Ch. 29 - An antiproton is identical to a proton except it...Ch. 29 - Prob. 64EAPCh. 29 - Prob. 65EAPCh. 29 - Particle accelerators, such as the Large Hadron...Ch. 29 - 67. A particle of charge q and mass m moves in the...Ch. 29 - 68. A Hall-effect probe to measure magnetic field...Ch. 29 - Prob. 69EAPCh. 29 - Prob. 70EAPCh. 29 - The 10-turn loop of wire shown in FIGURE P29.71...Ch. 29 - The two springs in FIGURE P29.72 each have a...Ch. 29 - Prob. 73EAPCh. 29 - Prob. 74EAPCh. 29 - A conducting bar of length I and mass m rests at...Ch. 29 - Prob. 76EAPCh. 29 - A wire along the x-axis carries current I in the...Ch. 29 - Prob. 78EAPCh. 29 - Prob. 79EAPCh. 29 - a. Derive an expression for the magnetic field...Ch. 29 - Prob. 81EAPCh. 29 - A long, straight conducting wire of radius R has a...Ch. 29 - Prob. 83EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Determine the initial direction of the deflection of charged particles as they enter the magnetic fields shown in Figure P29.2.arrow_forwardFigure P30.10 shows a circular current-carrying wire. Using the coordinate system indicated (with the z axis out of the page), state the direction of the magnetic field at points A and B.arrow_forward(a) An oxygen16 ion with a mass at 2.661026kg travels at 5.00106m/s perpendicular to a 1.20T magnetic field, which makes it move in a circular arc with a 0.231-m radius. What positive charge is on the ion? (b) What is the radio of this charge to the charge of an electron? (c) Discuss why the radio found in (b) should be an integer.arrow_forward
- Two infinitely long current-carrying wires run parallel in the xy plane and are each a distance d = 11.0 cm from the y axis (Fig. P30.83). The current in both wires is I = 5.00 A in the negative y direction. a. Draw a sketch of the magnetic field pattern in the xz plane due to the two wires. What is the magnitude of the magnetic field due to the two wires b. at the origin and c. as a function of z along the z axis, at x = y = 0? FIGURE P30.83arrow_forwardAt a particular instant an electron is traveling west to east with a kinetic energy of 10 keV. Earth's magnetic field has a horizontal component of 1.8105 T north and a vertical component of 5.0105 T down. (a) What is the path of the election? (b) What is the radius of curvature of the path?arrow_forwardWhy is the following situation impossible? Figure P28.46 shows an experimental technique for altering the direction of travel for a charged particle. A particle of charge q = 1.00 C and mass m = 2.00 1015 kg enters the bottom of the region of uniform magnetic field at speed = 2.00 105 m/s, with a velocity vector perpendicular to the field lines. The magnetic force on the particle causes its direction of travel to change so that it leaves the region of the magnetic field at the top traveling at an angle from its original direction. The magnetic field has magnitude B = 0.400 T and is directed out of the page. The length h of the magnetic field region is 0.110 m. An experimenter performs the technique and measures the angle at which the particles exit the top of the field. She finds that the angles of deviation are exactly as predicted. Figure P28.46arrow_forward
- A toroid has a major radius R and a minor radius r and is tightly wound with N turns of wire on a hollow cardboard torus. Figure P31.6 shows half of this toroid, allowing us to see its cross section. If R r, the magnetic field in the region enclosed by the wire is essentially the same as the magnetic field of a solenoid that has been bent into a large circle of radius R. Modeling the field as the uniform field of a long solenoid, show that the inductance of such a toroid is approximately L=120N2r2R Figure P31.6arrow_forwardAn alpha-particle ( m=6.641027kg , q=3.21019C ) travels in a circular path of radius 25 cm in a uniform magnetic field of magnitude 1.5 T. (a) What is the speed of the particle? (b) What is the kinetic energy in electron-volts? (c) Through what potential difference must the particle be accelerated in order to give it this kinetic energy?arrow_forwardTwo long, straight wires carry the same current as shown in Figure P30.22. One wire is parallel to the z axis and the other wire is parallel to the x axis as shown. Find an expression for the magnetic field at the origin.arrow_forward
- A uniform magnetic field of magnitude is directed parallel to the z-axis. A proton enters the field with a velocity v=(4j+3k)106m/s and travels in a helical path with a radius of 5.0 cm. (a) What is the value of B? (b) What is the time required for one trip around the helix? (c) Where is the proton 5.0107s after entering the field?arrow_forwardThe Hall effect finds important application in the electronics industry. It is used to find the sign and density of the carriers of electric current in semiconductor chips. The arrangement is shown in Figure P22.66. A semiconducting block of thickness t and width d carries a current I in the x direction. A uniform magnetic field B is applied in the y direction. If the charge carriers are positive, the magnetic force deflects them in the z direction. Positive charge accumulates on the top surface of the sample and negative charge on the bottom surface, creating a downward electric field. In equilibrium, the downward electric force on the charge carriers balances the upward magnetic force and the carriers move through the sample without deflection. The Hall voltage ΔVH = Vc − Va between the top and bottom surfaces is measured, and the density of the charge carriers can be calculated from it. (a) Demonstrate that if the charge carriers are negative the Hall voltage will be negative. Hence, the Hall effect reveals the sign of the charge carriers, so the sample can be classified as p-type (with positive majority charge carriers) or n-type (with negative). (b) Determine the number of charge carriers per unit volume n in terms of I, t, B, ΔVH, and the magnitude q of the carrier charge. Figure P22.66arrow_forwardA circular coil with 200 turns Las a radius of 2.0 cm. (a) What current through tire coil results in a magnetic dipole moment of 3.0 Am2? (b) What is the maximum torque that the coil will experience in a uniform field of strength 5.0102 ? (c) If tire angle between and B is 45°, what is the magnitude of tire torque on the coil? (d) What is the magnetic potential energy of coil for this orientation?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY