EBK PHYSICS
5th Edition
ISBN: 8220103026918
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 29, Problem 68GP
(a)
To determine
Whether they will always measure the same value of relative speed for each other.
(b)
To determine
Whether they will always measure the same value for time between two events.
(c)
To determine
Whether they will always measure the same value for length of object.
(d)
To determine
Whether they will always measure the same value for speed of light in vacuum.
(e)
To determine
Whether they will always measure the same value of speed of a third observer.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You are an engineer assigned to build a spaceship. The length and diameter of your spaceship as measured by an astronaut on board are 80.0 m and 25.0 m, respectively. The spaceship moves at 70% the speed of light relative to you on Earth in a direction parallel to its length. What are its dimensions as measured by you on Earth?
an aerospace is moving away from the earth at a velocity v = 0.6c to carry out a research. when the aircraft is at a distance of d = 5 x 10 ^ 8 km from the earth, a radio signal is sent to the aircraft from observers on earth. Count ita. How long does it take for the signal to reach the plane if calculated by researchers on earth and the crew on board?b. if an observer on earth measures the dimensions of the plane as long as 67 m, then how long is the plane measured by the crew on board?
Using video analysis, the motion of an object has been recorded as follows:
Measurement No.
time t (s)
distance x (m)
1
0.300
1.59E-02 (i.e. 1.59 × 10−2)
2
0.500
4.31E-02
3
0.700
9.04E-02
4
1.20
2.70E-01
Questions
Plot x vs. t on log-log paper. Label all axes properly, and draw a best-fit line through the data points.
Determine the slope of the best-fit line. Based on the slope, what type of motion does the mass do?
Now assume that the motion is described by
From the given values for t and x, calculate the acceleration a for each measurement and write it down in a table. Be sure to add the proper unit.
For the acceleration, find the average, the standard deviation, standard deviation of the mean and 2σ-uncertainty.
Report the final answer in standard form (mean ± uncertainty) with proper rounding and units.
Chapter 29 Solutions
EBK PHYSICS
Ch. 29.1 - Observer 1 shines a beam of light toward observer...Ch. 29.2 - Two identical atomic clocks are manufactured at a...Ch. 29.3 - A horizontal meterstick moving to the right is...Ch. 29.4 - A passenger jogs toward the front of a train with...Ch. 29.5 - Is the relativistic momentum of an object moving...Ch. 29.6 - An object of mass m moves with speed u. Rank the...Ch. 29.7 - If the speed of light were infinite, would the...Ch. 29.8 - Prob. 8EYUCh. 29 - Some distant galaxies are moving away from us at...Ch. 29 - Prob. 2CQ
Ch. 29 - When we view a distant galaxy, we notice that the...Ch. 29 - Prob. 4CQCh. 29 - Give an argument that shows that an object of...Ch. 29 - Section 29-1 The Postulates of Special Relativity ...Ch. 29 - Albert is piloting his spaceship heading east with...Ch. 29 - A street performer tosses a ball straight up into...Ch. 29 - Prob. 4PCECh. 29 - Predict/Explain Suppose you are a traveling...Ch. 29 - A neon sign in front of a cafe flashes on and off...Ch. 29 - A lighthouse sweeps its beam of light around in a...Ch. 29 - As a spaceship flies past with speed u, you...Ch. 29 - How fast should your spacecraft travel so that...Ch. 29 - Usain Bon set a world record for the 100-m dash on...Ch. 29 - (a) Find the average distance (in the Earths frame...Ch. 29 - Referring to Example 29-3, (a) how much does Benny...Ch. 29 - The Pi Meson An elementary particle called a pi...Ch. 29 - Predict/Calculate (a) Is it possible for you to...Ch. 29 - In order to cross the galaxy quickly, a spaceship...Ch. 29 - An observer moving toward Earth with a speed of...Ch. 29 - Predict/Calculate An astronaut moving with a speed...Ch. 29 - BIO Newly sprouted sunflowers can grow at the rate...Ch. 29 - As measured in earths frame of reference, the...Ch. 29 - Captain Jean Luc is piloting the USS Enterprise...Ch. 29 - Prob. 21PCECh. 29 - How fast does a 275-m spaceship move relative to...Ch. 29 - Suppose the speed of light in a vacuum were only...Ch. 29 - A rectangular painting is W = 117 cm wide and H =...Ch. 29 - Prob. 25PCECh. 29 - A cubical box is 0.75 m on a side (a) What are the...Ch. 29 - When parked, your car is 5 8 m long....Ch. 29 - An astronaut travels to a distant star with a...Ch. 29 - Predict/Calculate Laboratory measurements show...Ch. 29 - You and a friend travel through space in identical...Ch. 29 - A ladder 5.0 m long leans against a wall inside a...Ch. 29 - When traveling past an observer with a relative...Ch. 29 - Predict/Calculate The starships Picard and La...Ch. 29 - A spaceship moving toward Earth with a speed of...Ch. 29 - Suppose the probe in Problem 34 is launched in the...Ch. 29 - Suppose the speed of light is 35 mi/h. A paper...Ch. 29 - Two asteroids head straight for Earth from the...Ch. 29 - Two rocket ships approach Earth from opposite...Ch. 29 - A spaceship and an asteroid are moving in the same...Ch. 29 - An electron moves to the right in a laboratory...Ch. 29 - A uranium nucleus is traveling at 0.95c in the...Ch. 29 - Predict/Calculate Two rocket ships are racing...Ch. 29 - A 2.8 106-kg spaceship moves away from Earth with...Ch. 29 - An asteroid with a mass of 8.2 1011-kg is...Ch. 29 - An object has a relativistic momentum that is 8.50...Ch. 29 - A football player with a mass of 88 kg and a speed...Ch. 29 - A space probe with a rest mass of 8 2 107 kg and...Ch. 29 - At what speed does the classical momentum, p = mu,...Ch. 29 - A proton has 1836 times the rest mass of an...Ch. 29 - Star A has a mass of 3 0 1023 kg kg and is...Ch. 29 - Particles A through D have the following rest...Ch. 29 - Find the work that must be done on a proton to...Ch. 29 - A spring with a force constant of 595 N/m is...Ch. 29 - The 15 gallons of gasoline required to refuel your...Ch. 29 - Prob. 55PCECh. 29 - When a proton encounters an antiproton, the two...Ch. 29 - If a neutron moves with a speed of 0.99c, what are...Ch. 29 - A rocket with a mass of 2.7 106 kg has a...Ch. 29 - An object has a total energy that is 4.8 times its...Ch. 29 - Prob. 60PCECh. 29 - A nuclear power plant converts fuel energy at an...Ch. 29 - Prob. 62PCECh. 29 - What is the percent difference between the...Ch. 29 - Predict/Calculate Consider a baseball with a rest...Ch. 29 - A lump of putty with a mass of 0.240 kg and a...Ch. 29 - Prob. 66PCECh. 29 - Prob. 67PCECh. 29 - Prob. 68GPCh. 29 - CE You are standing next to a runway as an...Ch. 29 - CE An apple drops from the bough of a tree to the...Ch. 29 - CE Predict/Explain Consider two apple pies that...Ch. 29 - CE Predict/Explain An uncharged capacitor is...Ch. 29 - Cosmic Rays Protons in cosmic rays have been...Ch. 29 - At the CERN particle accelerator in Geneva,...Ch. 29 - A 14C nucleus, initially at rest, emits a beta...Ch. 29 - A clock at rest has a rectangular shape, with a...Ch. 29 - A starship moving toward Earth with a speed of...Ch. 29 - Prob. 78GPCh. 29 - A 2.5-m titanium rod in a moving spacecraft is at...Ch. 29 - Electrons are accelerated from rest through a...Ch. 29 - The rest energy, m0c2, of a particle with a...Ch. 29 - Predict/Calculate Consider a relativistic air...Ch. 29 - Predict/Calculate In Conceptual Example 29-7...Ch. 29 - A pulsar is a collapsed, rotating star that sends...Ch. 29 - Prob. 85GPCh. 29 - Decay of the Particle When at rest, the particle...Ch. 29 - Prob. 87PPCh. 29 - Prob. 88PPCh. 29 - Prob. 89PPCh. 29 - Prob. 90PPCh. 29 - Referring to Example 29-9 The Picard approaches...Ch. 29 - Referring to Example 29-9 Faraway Point starbase...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) How fast would an athlete need to be running for a 100-m race to look 100 yd long? (b) Is the answer consistent with the fact that relativistic effects are difficult to observe in ordinary circumstances? Explain.arrow_forwardSuppose an astronaut is moving relative to the Earth at a significant fraction of the speed of light. (a) Does he observe the rate of his clocks to have slowed? (b) What change in the rate of Earth-bound clocks does he see? (c) Does his ship seem to him to shorten? (d) What about the distance between stars that lie on lines parallel to his motion? (e) Do he and an Earth-bound observer agree on his velocity relative to the Earth?arrow_forward(a) All but the closest galaxies are receding from our own Milky Way Galaxy. If a galaxy 12.0109ly ly away is receding from us at 0. 0.900c, at what velocity relative to us must we send an exploratory probe to approach the other galaxy at 0.990c, as measured from that galaxy? (b) How long will it take the probe to reach the other galaxy as measured from the Earth? You may assume that the velocity of the other galaxy remains constant. (c) How long will it then take for a radio signal to be beamed back? (All of this is possible in principle, but not practical.)arrow_forward
- The truck in Figure P39.1 is moving at a speed of 10.0 m/s relative to the ground. The person on the truck throws a baseball in the backward direction at a speed of 20.0 m/s relative to the truck. What is the velocity of the baseball as measured by the observer on the ground? Figure P39.1arrow_forwardAn observer in a coasting spacecraft moves toward a mirror at speed v relative to the reference frame labeled S in Figure P39.85. The mirror is stationary with respect to S. A light pulse emitted by the spacecraft travels toward the mirror and is reflected back to the spacecraft. The spacecraft is a distance d from the mirror (as measured by observers in S) at the moment the light pulse leaves the spacecraft. What is the total travel time of the pulse as measured by observers in (a) the S frame and (b) the spacecraft?arrow_forwardAn atomic clock is placed in a jet airplane. The clock measures a time interval of 3600 s when the jet moves with a speed of 400 m/s. How much longer or shorter a time interval does an identical clock held by an observer on the ground measure? (Hint: For , γ ≈ 1 + v2/2c2.)arrow_forward
- An alien spaceship traveling at 0.600c toward the Earth launches a landing craft. The landing craft travels in the same direction with a speed of 0.800c relative to the mother ship. As measured on the Earth, the spaceship is 0.200 ly from the Earth when the landing craft is launched. (a) What speed do the Earth-based observers measure for the approaching landing craft? (b) What is the distance to the Earth at the moment of the landing crafts launch as measured by the aliens? (c) What travel time is required for the landing craft to reach the Earth as measured by the aliens on the mother ship? (d) If the landing craft has a mass of 4.00 105 kg, what is its kinetic energy as measured in the Earth reference frame?arrow_forwardA spacecraft zooms past the Earth with a constant velocity. An observer on the Earth measures that an undamaged clock on the spacecraft is ticking at one-third the rate of an identical clock on the Earth. What does an observer on the spacecraft measure about the Earth-based clocks ticking rate? (a) It runs more than three times faster than his own clock. (b) It runs three times faster than his own. (c) It runs at the same rate as his own. (d) It runs at one-third the rate of his own. (e) It runs at less than one-third the rate of his own.arrow_forwardSuppose an astronaut is moving relative to Earth at a significant fraction of the speed of light. (a) Does he observe the rate of his to have slowed? (b) What change in the rate of earthbound does he see? (c) Does his ship seem to him to shorten? (d) What about the distance between two stars that lie in the direction of his motion? (e) Do he and an earthbound observer agree on his velocity relative to Earth?arrow_forward
- The Sun produces energy at a rate of 4.001026 W by the fusion of hydrogen. (a) How many kilograms of hydrogen undergo fusion each second? (b) If the Sun is 90.0% hydrogen and half of this can undergo fusion before the Sun changes character, how long could it produce energy at its current rate? (c) How many kilograms of mass is the Sun losing per second? (d) What fraction of its mass will it have lost in the time found in part (b)?arrow_forwardAn Earth satellite used in the Global Positioning System moves in a circular orbit with period 11 h 58 min. (a) Determine the radius of its orbit. (b) Determine its speed. (c) The satellite contains an oscillator producing the principal nonmilitary GPS signal. Its frequency is 1 575.42 MHz in the reference frame of the satellite. When it is received on the Earths surface, what is the fractional change in this frequency due to time dilation, as described by special relativity? (d) The gravitational blueshift of the frequency according to general relativity is a separate effect. The magnitude of that fractional change is given by ff=Ugmc2 where Ug/m is the change in gravitational potential energy per unit mass between the two points at which the signal is observed. Calculate this fractional change in frequency. (e) What is the overall fractional change in frequency? Superposed on both of these relativistic effects is a Doppler shift that is generally much larger. It can be a redshift or a blueshift, depending on the motion of a particular satellite relative to a GPS receiver (Fig. P1.39).arrow_forward(a) Find the value of for the following situation. An astronaut measures the length of his spaceship to be 100 m, while an observer measures it to be 25.0 m. (b) What is the of the spaceship relative to Earth?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning