College Physics
10th Edition
ISBN: 9781285737027
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 29, Problem 50P
(a)
To determine
The required time.
(b)
To determine
The required distance.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A particular radioactive source produces 100 mrad of 2-MeV gamma rays per hour at a distance of 1.0 m. (a) How long could a person stand at this distance before accumulating an intolerable dose of 1 rem? (b) Assuming the gamma radiation is emitted uniformly in all directions, at what distance would a person recieve a dose of 10 mrad/h from this source?
dont provode hand written solution
A 73.0 kg person experiences a whole-body exposure to alpha radiation with energy of 1.50 MeVMeV. A total of 5.40×1012 alpha particles is absorbed. Use the Table of Relative biological effectiveness (RBE) for several types of radiation.
A) What is the absorbed dose in rad?
Express your answer in rads.
B) What is the equivalent dose in rem?
Express your answer in rem.
C) If the source is 0.0100 g of 226Ra (half-life 1600 years) somewhere in the body, what is the activity of the source?
Express your answer in decays per second.
D) If all the alpha particles produced are absorbed, what time is required for this dose to be delivered?
Express your answer with the appropriate units.
During a 2-h period of radiation therapy, alpha radiation is deposited into a patient's body at a rate of 3.3 x 10-8 J/s. What effective dose does the 59-kg patient receive? (Units: mSv)
Use the following table of RBEs.
Radiation type
RBE
X-rays
1
Gamma rays
1
Electrons
1
Protons
2
Alpha particles
20
Chapter 29 Solutions
College Physics
Ch. 29.3 - Prob. 29.1QQCh. 29.3 - What fraction of a radioactive sample has decayed...Ch. 29.3 - Prob. 29.3QQCh. 29.6 - Prob. 29.4QQCh. 29.6 - Prob. 29.5QQCh. 29 - Prob. 1CQCh. 29 - Prob. 2CQCh. 29 - Prob. 3CQCh. 29 - Prob. 4CQCh. 29 - Prob. 5CQ
Ch. 29 - Prob. 6CQCh. 29 - Prob. 7CQCh. 29 - A radioactive sample has an activity R. For each...Ch. 29 - Prob. 9CQCh. 29 - Prob. 10CQCh. 29 - Prob. 11CQCh. 29 - Prob. 12CQCh. 29 - Prob. 13CQCh. 29 - Prob. 1PCh. 29 - Prob. 2PCh. 29 - Prob. 3PCh. 29 - Prob. 4PCh. 29 - Using 2.3 1017 kg/m3 as the density of nuclear...Ch. 29 - Prob. 6PCh. 29 - Prob. 7PCh. 29 - Prob. 8PCh. 29 - Prob. 9PCh. 29 - Prob. 10PCh. 29 - Prob. 11PCh. 29 - Prob. 12PCh. 29 - Prob. 13PCh. 29 - Prob. 14PCh. 29 - Two nuclei having the same mass number are known...Ch. 29 - Prob. 16PCh. 29 - Radon gas has a half-life of 3.83 days. If 3.00 g...Ch. 29 - Prob. 18PCh. 29 - Prob. 19PCh. 29 - Prob. 20PCh. 29 - Prob. 21PCh. 29 - Prob. 22PCh. 29 - Prob. 23PCh. 29 - Prob. 24PCh. 29 - Prob. 25PCh. 29 - Prob. 26PCh. 29 - Prob. 27PCh. 29 - Prob. 28PCh. 29 - The Mass of 56Fe is 55.934 9 u, and the mass of...Ch. 29 - Prob. 30PCh. 29 - Prob. 31PCh. 29 - Prob. 32PCh. 29 - Prob. 33PCh. 29 - Prob. 34PCh. 29 - Prob. 35PCh. 29 - Prob. 36PCh. 29 - Prob. 37PCh. 29 - Prob. 38PCh. 29 - Prob. 39PCh. 29 - Prob. 40PCh. 29 - Prob. 41PCh. 29 - Prob. 42PCh. 29 - Prob. 43PCh. 29 - Prob. 44PCh. 29 - Prob. 45PCh. 29 - Prob. 46PCh. 29 - Prob. 47PCh. 29 - Prob. 48PCh. 29 - Prob. 49PCh. 29 - Prob. 50PCh. 29 - Prob. 51APCh. 29 - Prob. 52APCh. 29 - Prob. 53APCh. 29 - Prob. 54APCh. 29 - Prob. 55APCh. 29 - Prob. 56APCh. 29 - Prob. 57APCh. 29 - Prob. 58APCh. 29 - Prob. 59APCh. 29 - Prob. 60APCh. 29 - Prob. 61APCh. 29 - Prob. 62AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Calculate the dose in Sv to the chest at a patient given an xray under the following conditions. The xray beam intensity is 1.50 W/m2, the area of the chest exposed is 0.0750 m2 35.0% of the xrays are absorbed in 20.0 kg of tissue, and the exposure time is 0.250 s.arrow_forwardWhat is the dose in mSv for: (a) a 0.1-Gy X-ray? (b) 2.5 mGy of neutron exposure to the eye? (c) 1.5m Gy of a exposure?arrow_forwardWhat time interval elapses while 90.0% of the radioactivity of a sample of 3372As disappears as measured by its activity? The half-life of 3372As is 26 h.arrow_forward
- Find the radiation dose in Gy for: (a) A 10-mSv fluoroscopic X-ray series, (b) 50 mSv of skin exposure by an a emitter, (c) 160 mSv of and rays from the 40K in your body.arrow_forwardFind the radiation dose in Gy for: (a) A 10mSv fluoroscopic xray series. (b) 50 mSv of skin exposure by an emitter. (c) 160 mSv of and rays from the 40K in your body.arrow_forwardData from the appendices and the periodic table may be needed for these problems. Show that the activity of the 14C in 1.00 g of 12C found in living tissue is 0.250 Bq.arrow_forward
- How many Gy of exposure is needed to give a cancerous tumor a dose of 40 Sv if it is exposed to acfivity?arrow_forwardWhat is the dose in Sv in a cancer treatment that exposes the patient to 200 Gy of rays?arrow_forwardIf everyone in Australia received an extra 0.05 mSv per year of radiation, what would be the increase in the number of cancer deaths per year? (Assume that time had elapsed for the effects to become apparent.) Assume that there are 200104 deaths per Sv of radiation per year. What percent at the actual number of cancer deaths recorded is this?arrow_forward
- The (effective) dose to a patient can be measured in milli-Serverts (mSv) or expressed as the time taken to receive the equivalent dose from background radiation. A certain radiograph gives a 1.232 mSv dose which is equivalent to a background radiation dose of 32 weeks.a)How many days in 32 weeks? Give your answer as a whole number. b)Using the information for the radiograph in this question, calculate the UK daily background dose (in mSv/day). Give your answer to 5 decimal places and use it to this accuracy, if needed in subsequent calculations. c)Another radiograph has a 0.0054 mSv dose. Work out the equivalent background dose (in days) for this radiograph. Give your answer to 2 decimal places and use it to this accuracy in any subsequent calculations. d)How many hours is the number of days in part c) equivalent to? Give your answer to 2 decimal places.arrow_forwardA 73.0 kg person experiences a whole-body exposure to alpha radiation with an energy of 1.50 MeVMeV. A total of 5.40×1012 alpha particles is absorbed. Use the Table of Relative biological effectiveness (RBE) for several types of radiation. A) What is the absorbed dose in rad? Express your answer in rads. B) What is the equivalent dose in rem? Express your answer in rem. C) If the source is 0.0100 gg of 226Ra (half-life 1600 years) somewhere in the body, what is the activity of the source? Express your answer in decays per second. D) If all the alpha particles produced are absorbed, what time is required for this dose to be delivered? Express your answer with the appropriate units.arrow_forwardasaparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax