College Physics
10th Edition
ISBN: 9781285737027
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 29, Problem 31P
(a)
To determine
The spontaneity of the decay.
(b)
To determine
The spontaneity of the decay.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 29 Solutions
College Physics
Ch. 29.3 - Prob. 29.1QQCh. 29.3 - What fraction of a radioactive sample has decayed...Ch. 29.3 - Prob. 29.3QQCh. 29.6 - Prob. 29.4QQCh. 29.6 - Prob. 29.5QQCh. 29 - Prob. 1CQCh. 29 - Prob. 2CQCh. 29 - Prob. 3CQCh. 29 - Prob. 4CQCh. 29 - Prob. 5CQ
Ch. 29 - Prob. 6CQCh. 29 - Prob. 7CQCh. 29 - A radioactive sample has an activity R. For each...Ch. 29 - Prob. 9CQCh. 29 - Prob. 10CQCh. 29 - Prob. 11CQCh. 29 - Prob. 12CQCh. 29 - Prob. 13CQCh. 29 - Prob. 1PCh. 29 - Prob. 2PCh. 29 - Prob. 3PCh. 29 - Prob. 4PCh. 29 - Using 2.3 1017 kg/m3 as the density of nuclear...Ch. 29 - Prob. 6PCh. 29 - Prob. 7PCh. 29 - Prob. 8PCh. 29 - Prob. 9PCh. 29 - Prob. 10PCh. 29 - Prob. 11PCh. 29 - Prob. 12PCh. 29 - Prob. 13PCh. 29 - Prob. 14PCh. 29 - Two nuclei having the same mass number are known...Ch. 29 - Prob. 16PCh. 29 - Radon gas has a half-life of 3.83 days. If 3.00 g...Ch. 29 - Prob. 18PCh. 29 - Prob. 19PCh. 29 - Prob. 20PCh. 29 - Prob. 21PCh. 29 - Prob. 22PCh. 29 - Prob. 23PCh. 29 - Prob. 24PCh. 29 - Prob. 25PCh. 29 - Prob. 26PCh. 29 - Prob. 27PCh. 29 - Prob. 28PCh. 29 - The Mass of 56Fe is 55.934 9 u, and the mass of...Ch. 29 - Prob. 30PCh. 29 - Prob. 31PCh. 29 - Prob. 32PCh. 29 - Prob. 33PCh. 29 - Prob. 34PCh. 29 - Prob. 35PCh. 29 - Prob. 36PCh. 29 - Prob. 37PCh. 29 - Prob. 38PCh. 29 - Prob. 39PCh. 29 - Prob. 40PCh. 29 - Prob. 41PCh. 29 - Prob. 42PCh. 29 - Prob. 43PCh. 29 - Prob. 44PCh. 29 - Prob. 45PCh. 29 - Prob. 46PCh. 29 - Prob. 47PCh. 29 - Prob. 48PCh. 29 - Prob. 49PCh. 29 - Prob. 50PCh. 29 - Prob. 51APCh. 29 - Prob. 52APCh. 29 - Prob. 53APCh. 29 - Prob. 54APCh. 29 - Prob. 55APCh. 29 - Prob. 56APCh. 29 - Prob. 57APCh. 29 - Prob. 58APCh. 29 - Prob. 59APCh. 29 - Prob. 60APCh. 29 - Prob. 61APCh. 29 - Prob. 62AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) Calculate the energy released in the a decay of 238U. (b) What fraction of the mass at a single 238U is destroyed in the decay? The mass of 234Th is 234.043593 u. (c) Although the fractional mass loss is laws for a single nucleus, it is difficult to observe for an entire macroscopic sample of uranium. Why is this?arrow_forwardUnreasonable Results The relatively scarce naturally occurring calcium isotope 48Ca has a halflife at about 21016y. (a) A small sample of this isotope is labeled as having an activity of 1.0 Ci. What is the mass of the 48Ca in the sample? (b) What is unreasonable about this result? (c) What assumption is responsible?arrow_forward(a) Write the decay equation for the decay of 235U. (b) What energy is released in this decay? The mass of the daughter nuclide is 231.036298 u. (c) Assuming the residual nucleus is formed in its ground state, how much energy goes to the particle?arrow_forward
- (a) Calculate the energy released in the a decay of 238U . (b) What fraction of the mass of a single 238U is destroyed in the decay? The mass of 234Th is 234.043593 u. (c) Although the fractional mass loss is large for a single nucleus, it is difficult to observe for an entire macroscopic sample of uranium. Why is this?arrow_forwardThis problem demonstrates that the binding energy of the electron in the ground state of a hydrogen atom is much smaller than the rest mass energies of the proton and electron. Calculate the mass equivalent in u of the 13.6-eV binding energy of an electron in a hydrogen atom, and compare this with the known mass of the hydrogen atom. Subtract the known mass of the proton from the known mass of the hydrogen atom. Take the ratio of the binding energy of the electron (13.6 eV) to the energy equivalent of the electron’s mass (0.511 MeV). Discuss how your answers confirm the stated purpose of this problem.arrow_forward(a) Calculate BE/A for 235U, the rarer of the two most common uranium isotopes. (b) Calculate BE/A for 238U. (Most of uranium is 238U.) Note that 238U has even numbers at both protons and neutrons. Is the BE/A of 238U significantly different from that of 235U?arrow_forward
- If two nuclei are to fuse in a nuclear reaction, they must be moving fast enough so that the repulsive Coulomb force between them does not prevent them for getting within R1014mof one another. At this distance or nearer, the attractive nuclear force can overcome the Coulomb force, and the nuclei are able to fuse. (a) Find a simple formula that can be used to estimate the minimum kinetic energy the nuclei must have if they are to fuse. To keep the calculation simple, assume the two nuclei are identical and moving toward one another with the same speed v. (b) Use this minimum kinetic energy to estimate the minimum temperature a gas of the nuclei must have before a significant number of them will undergo fusion. Calculate this minimum temperature first for hydrogen and then for helium. (Hint: For fusion to occur, the minimum kinetic energy when the nuclei are far apart must be equal to the Coulomb potential energy when they are a distance R apart.)arrow_forward(a) Calculate the number of grams of deuterium in an 80.000L swimming pool, given deuterium is 0.0150% of natural hydrogen. (b) Find the energy released in joules if this deuterium is fused via the reaction 2H+2H3He+n. (c) Could the neutrons be used to create more energy? (d) Discuss the amount of this type of energy in a swimming pool as compared to that in, say, a gallon of gasoline, also taking into consideration that water is far more abundant.arrow_forwardData from the appendices and the periodic table may be needed for these problems. Unreasonable Results (a) Repeat Exercise 31.57 but include the 0.0055% natural abundance of 234U with its 2.45105y halflife. (b) What is unreasonable about this result? (c) What assumption is responsible? (d) Where does the 234U come from if it is not primordial?arrow_forward
- The purpose of this problem is to show in three ways that the binding energy at the election in a hydrogen atom is negligible compared with the masses of the proton and electron. (a) Calculate the mass equivalent in u of the 13.6eV binding energy of an electron in a hydrogen atom, and compete this with the mass of the hydrogen atom obtained from Appendix A. (b) Subtract the mass at the proton given in Table 31.2 from the mass at the hydrogen atom given in Appendix A. You will find the difference is equal to the electron’s mass to three digits, implying the binding energy is small in comparison. (c) Take the ratio of the binding energy at the electron (13.6 eV) to the energy equivalent of the electron's mass (0.511 MeV). (d) Discuss how your answers confirm the stated purpose of this problem.arrow_forwardIntegrated Concepts: (a) What temperature gas would have atoms moving fast enough to bring two 3He nuclei into contact? Note that, because both are moving, the average kinetic energy only needs to be half the electric potential energy of these doubly charged nuclei when just in contact with one another. (b) Does this high temperature imply practical difficulties for doing this in controlled fusion?arrow_forward(a) Write the complete decay equation for 90Sr, a major waste product of nuclear reactors, (b) Find the energy released in the decay.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning