Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 29, Problem 43AP
To determine
The magnetic field at the center of the coil.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The figure below is a cross-sectional view of a coaxial cable. The center
conductor is surrounded by a rubber layer, an outer conductor, and another
rubber layer. In a particular application, the current in the inner conductor is
I, = 1.14 A out of the page and the current in the outer conductor is I2 =
3.04 A into the page. Assuming the distance d = 1.00 mm, answer the
following.
(a) Determine the magnitude and direction of the magnetic field at point
а.
magnitude
-Select-
direction
(b) Determine the magnitude and direction of the magnetic field at
point b.
magnitude
HT
direction
---Select--
The figure below is a cross-sectional view of a coaxial cable. The center conductor is surrounded by a rubber layer, an outer conductor, and another rubber layer. In a particular application, the current in the inner conductor is I1 = 1.12 A out of the page and the current in the outer conductor is I2 = 3.04 A into the page. Assuming the distance d = 1.00 mm, answer the following.
Q-12
Chapter 29 Solutions
Physics for Scientists and Engineers
Ch. 29.1 - Consider the magnetic field due to the current in...Ch. 29.2 - A loose spiral spring carrying no current is hung...Ch. 29.3 - Prob. 29.3QQCh. 29.3 - Prob. 29.4QQCh. 29.4 - Consider a solenoid that is very long compared...Ch. 29 - Calculate the magnitude of the magnetic field at a...Ch. 29 - You are working as an expert witness in a civil...Ch. 29 - In Niels Bohrs 1913 model of the hydrogen atom, an...Ch. 29 - Prob. 4PCh. 29 - Prob. 5P
Ch. 29 - Consider a flat, circular current loop of radius R...Ch. 29 - Prob. 7PCh. 29 - One long wire carries current 30.0 A to the left...Ch. 29 - Determine the magnetic field (in terms of I, a,...Ch. 29 - Prob. 10PCh. 29 - Two long, parallel wires carry currents of I1 =...Ch. 29 - Prob. 12PCh. 29 - Prob. 13PCh. 29 - Prob. 14PCh. 29 - You are part of a team working in a machine parts...Ch. 29 - Why is the following situation impossible? Two...Ch. 29 - Prob. 17PCh. 29 - Niobium metal becomes a superconductor when cooled...Ch. 29 - The magnetic coils of a tokamak fusion reactor are...Ch. 29 - A packed bundle of 100 long, straight, insulated...Ch. 29 - The magnetic field 40.0 cm away from a long,...Ch. 29 - Prob. 22PCh. 29 - A long solenoid that has 1 000 turns uniformly...Ch. 29 - A certain superconducting magnet in the form of a...Ch. 29 - Prob. 25PCh. 29 - You are given a certain volume of copper from...Ch. 29 - Prob. 27PCh. 29 - You are working for a company that creates special...Ch. 29 - A solenoid of radius r = 1.25 cm and length =...Ch. 29 - The magnetic moment of the Earth is approximately...Ch. 29 - A 30.0-turn solenoid of length 6.00 cm produces a...Ch. 29 - Why is the following situation impossible? The...Ch. 29 - Suppose you install a compass on the center of a...Ch. 29 - Prob. 34APCh. 29 - A nonconducting ring of radius 10.0 cm is...Ch. 29 - Prob. 36APCh. 29 - A very large parallel-plate capacitor has uniform...Ch. 29 - Two circular coils of radius R, each with N turns,...Ch. 29 - Prob. 39APCh. 29 - Two circular loops are parallel, coaxial, and...Ch. 29 - As seen in previous chapters, any object with...Ch. 29 - Review. Rail guns have been suggested for...Ch. 29 - Prob. 43APCh. 29 - An infinitely long, straight wire carrying a...Ch. 29 - Prob. 45CPCh. 29 - We have seen that a long solenoid produces a...Ch. 29 - A wire carrying a current I is bent into the shape...Ch. 29 - Prob. 48CPCh. 29 - Prob. 49CPCh. 29 - Prob. 50CPCh. 29 - The magnitude of the force on a magnetic dipole ...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Problem 1: Two long thin parallel wires are 0.1 m apart and each wire carries a current of 12 A. The current for the wire on the left is into the page and the current for the wire on the right is out of the page. What is B at point P, 0.08 m from one wire and 0.06 m from the other wire? Hint: Point P is on the corner of the right triangle with the right angle. Answer: B = −(1.4 × 10−5 T)î − (4.8 × 10-5 T)ĵ. 0.08 m - X 0.1 m- I -0.06 marrow_forwardSuppose in the figure that the four identical currents i = 14 A, into or out of the page as shown, form a square of side 70 cm. What is the force per unit length (magnitude and direction) on the wire in the bottom left hand corner? (N/m) Take the positive y direction as up and the positive x direction as to the right.What is the magnitude of the force per unit length? Check the units for MKS. Incorrect. Tries 2/4 Previous Tries What is the x component of the force per unit length? Tries 0/4 What is the y component of the force per unit length? Tries 0/4arrow_forwardThe figure below is a cross-sectional view of a coaxial cable. The center conductor is surrounded by a rubber layer, an outer conductor, and another rubber layer. In a particular application, the current in the inner conductor is I₁ = 1.20 A out of the page and the current in the outer conductor is I2 = 2.96 A into the page. Assuming the distance d = 1.00 mm, answer the following. I X 1₂ (a) Determine the magnitude and direction of the magnetic field at point a. magnitude μT direction to the left (b) Determine the magnitude and direction of the magnetic field at point b. μT magnitude direction into the pagearrow_forward
- Can you please answer d, e & f?arrow_forwardFour long, parallel conductors carry equal currents of I = 4.00 A. The figure below is an end view of the conductors. The current direction is into the page at points A and B and out of the page at C and D. Already calculated B= 16 uT . But there is another question I dont know how to answer: What If? What would be the magnitude and direction of the initial acceleration of an electron moving with velocity 3.18 ✕ 105 m/s into the page at point P?ays: (magnitude and direction)arrow_forwardan iron wire with cross-section 3,2 * 10-6 m2 carries current 167 A. Find the drift velocity Vd , in units of milimeters per second , by assuming the existence of two carries per iron atom. Hint : first , calculate number density n of the charge carries.arrow_forward
- (a). A silver wire 6.6 mm with diameter in which 3.6 ampere current passing through. Calculate how manycoulombs of electric charge flows from silver wire in 3.0 hour. (b). The thin copper wire with radius of 1.3 mm is wound into a torus shaped coil as revealed in figure.From copper wire 8.75 x 10-2ampere electric current passing though in 4800 sec. Number of free electronsper cubic meter in copper wire is 5.8 x 1028. Calculate magnitude of electron’s drift velocity in thediameter of copper wire.arrow_forwardSuppose in the figure that the four identical currents i = 13 A, into or out of the page as shown, form a square of side 130 cm. What is the force per unit length (magnitude and direction) on the wire in the bottom left hand corner? (N/m) Take the positive y direction as up and the positive x direction as to the right.What is the magnitude of the force per unit length? What is the x component of the force per unit length? What is the y component of the force per unit length?arrow_forwardIn the diagram shown below, the four currents are assumed to be held in place at their current locations. The currents have the following values: IA = 3.000 A, IB = 3.000 A, Ic = 1.000 A and Ip = 2.000 A. Let d = 12.500 cm and assume standard x- and y-axes at point P₁. (Be careful about signs!) ΑΟ BO 3d P1 d d OD The angle of the total magnetic field at P₁, as measured from the +y-axis, in degrees and to three decimal places, isarrow_forward
- The current intensity passing through the center of the coaxial cable, whose cross-sectional view is given in the figure, is i=1A. Inside the cylindrical shell, there is a non-uniform current density expressed as J=C/r3, with C=2.4x10-3 A.m. inside the cable radius a=3 mm, outer radius b=5 mm. at r=4 mm and r=6 mm;a. closed currents and their directions,b. Find the magnitude and direction of the magnetic fields.( μ0 = 4π×10-7 T.m/A , π=3.14)arrow_forwardA wire of circular cross-section carries current density that is not uniform but varies with distance from the center as j(r)=j0(1-(r/R)2), for radius r in the range 0 < r < R. Here, j0 is a constant with units amperes per square meter, and the radius of the wire is R = 0.49 mm. A) Find an expression for the current enclosed in a cylinder with a radius of r < R. B) If the total current in the wire is I, find an expression for the constant j0, in terms of the other variables in the problem. C) If the total current is 1.5 A, what is the constant j0, in amperes per square meter? D) Find an expression for the magnetic field inside the wire, r < R, in terms of the current I. E) Find an expression for the magnetic field outside of the wire, for r > R. F) For what r, in meters, is the current enclosed maximum? G) What is the maximum value of the enclosed current, in amperes? H) For what r, in meters, is the magnetic field maximized? I) What is the maximum value of…arrow_forwardan iron wire with cross-section 3,7 * 10-6 m2 carries current 168 A. Find the drift velocity Vd, in units of millimetres per second, by assuming the existence of two carries per iron atom. Hint: first, calculate the number density n of the charge carries.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON