Concept explainers
Review. Rail guns have been suggested for launching projectiles into space without chemical rockets. A tabletop model rail gun (Fig. P29.42) consists of two long, parallel, horizontal rails ℓ = 3.50 cm apart, bridged by a bar of mass m = 3.00 g that is free to slide without friction. The rails and bar have low electric resistance, and the current is limited to a constant I = 24.0 A by a power supply that is far to the left of the figure, so it has no magnetic effect on the bar. Figure P29.42 shows the bar at rest at the midpoint of the rails at the moment the current is established. We wish to find the speed with which the bar leaves the rails after being released from the midpoint of the rails. (a) Find the magnitude of the magnetic field at a distance of 1.75 cm from a single long wire carrying a current of 2.40 A. (b) For purposes of evaluating the magnetic field, model the rails as infinitely long. Using the result of part (a), find the magnitude and direction of the magnetic field at the midpoint of the bar. (c) Argue that this value of the field will be the same at all positions of the bar to the right of the midpoint of the rails. At other points along the bar, the field is in the same direction as at the midpoint, but is larger in magnitude. Assume the average effective magnetic field along the bar is five times larger than the field at the midpoint. With this assumption, find (d) the magnitude and (e) the direction of the force on the bar. (f) Is the bar properly modeled as a particle under constant acceleration? (g) Find the velocity of the bar after it has traveled a distance d = 130 cm to the end of the rails.
Figure P29.42
(a)
Answer to Problem 42AP
Explanation of Solution
Given info: The length of the rails is
Formula to calculate the magnetic field is
Here,
Substitute
Conclusion:
Therefore, the magnitude of the magnetic field at a distance of
(b)
Answer to Problem 42AP
Explanation of Solution
Given info: The length of the rails is
The diagram that represents the given situation is shown below.
Figure (I)
Since the current is diverted through the bar, only half of each rails carries currents, so the field produce by each rail is half of the infinitely long wire produces.
Write the expression for the magnetic field produce by conductor AB at point C is,
Substitute
Write the expression for the magnetic field produce by conductor DE at point C is,
Substitute
Formula to calculate the total magnetic field at point C is,
Substitute
Conclusion:
Therefore, the magnitude of the magnetic field at the mid-point of the bar is
(c)
Answer to Problem 42AP
Explanation of Solution
Given info: The length of the rails is
The assumption makes that the rails are infinitely long so, the length of the rail to the right of the bar does not depend upon the location of the bar. Hence the magnetic field will be same at all position of the bar to the right of the midpoint of the rails.
Conclusion:
Therefore, due to infinite length of the rails makes the field same at all position of the midpoint of the bar.
(d)
Answer to Problem 42AP
Explanation of Solution
Given info: The length of the rails is
Formula to calculate the force on the bar is,
Here,
Substitute
Conclusion:
Therefore, the magnitude of the force on the bar is
(e)
Answer to Problem 42AP
Explanation of Solution
Given info: The length of the rails is
The force vector on the bar is
Conclusion:
Therefore, the direction of the force on the bar is in positive x-direction.
(f)
Answer to Problem 42AP
Explanation of Solution
Given info: The length of the rails is
The length of the bar, value of current and field producer is constant so, the force exerted on the bar is constant that gives uniform acceleration of the bar.
Formula to calculate the acceleration of the bar is,
Substitute
Conclusion:
Therefore, the bar will move with constant acceleration of magnitude
(g)
Answer to Problem 42AP
Explanation of Solution
Given info: The length of the rails is
Formula to calculate the velocity of the bar is,
Here,
Substitute
Conclusion:
Therefore, the velocity of the bar is
Want to see more full solutions like this?
Chapter 29 Solutions
Physics for Scientists and Engineers
- In the accompanying figure, the rails, connecting end piece, and rod all have a resistance per unit length of 2.0 Ω/cm. The rod moves to the left at v = 3.0 m/s. If B = 0.75 T everywhere in the region, what is the current in the circuit (a) when a = 8.0 cm? (b) when a = 5.0 cm? Specify also the sense of the current flow.arrow_forwardA copper wire with a square cross-section (side length 5.00 µm) is next to an iron wire with a rightward current of 3.00 A. The two wires are parallel over a region of 20.0 cm, where they are 1.60 cm apart. The iron wire produces a magnetic field on the copper wire. The copper wire is connected to a 5.00 V power source, with current directed rightward. Data of copper: resistivity = 1.68 x 10-8 Ohm m; free electron number density = 8.50 x 1028/m3arrow_forwardA copper wire with a square cross-section (side length 5.00 µm) is next to an iron wire with a rightward current of 3.00 A. The two wires are parallel over a region of 20.0 cm, where they are 1.60 cm apart. The iron wire produces a magnetic field on the copper wire. The copper wire is connected to a 5.00 V power source, with current directed rightward. Data of copper: resistivity = 1.68 x 10-8 Ohm m; free electron number density = 8.50 x 1028/m3arrow_forward
- I need the answer as soon as possiblearrow_forwardCan you please answer d, e?arrow_forwardTwo VERY LONG wires are placed along parallel lines as shown below in the picture. LEFT (at X1= 0) has a current going out of the page of value, li = 4 A. The current on the RIGHT (at X2= d) has a current going into the page of the page of value, 2 = 6 A. The point "P" is at the location (x=6.00cm, z=10.4cm) The wire ON THE d d d Wire 1 Wire 2 a. Find the magnitude of the magnetic field due to wire 2 at the location of wire 1 The Biot-Savart law say the direction of the magnetic field at a field point located in a direction f (from source to field point) where a source wire carries a current in the direction î is î X Î b. Find the unit directions for î and Î and perform the cross product to determine the direction of the magnetic field due to wire2 at the location of wire1. c. Using the formula format find the force per unit length in “I.j,k" d. Find the magnitude of the magnetic field due to wire2 at the location of field point P e. Find the unit directions for f and Î and perform the…arrow_forward
- The figure above stands under a tree during a lightning storm. If lightning comes down the side of the tree, a portion can jump over to the person, especially if the current on the tree reaches a dry region on the bark and thereafter must travel through air to reach the ground. In the figure, part of the lightning jumps through distance d in air and then travels through the person (who has negligible resistance relative to that of air). The rest of the current travels through air alongside the tree, for a distance h. If d/h = 0.400 and the total current is I = 5000 A, what is the current through the person?arrow_forwardTwo VERY LONG wires are placed along parallel lines as shown below in the picture. The wire ON THE LEFT (at X:= 0) has a current going out of the page of value, I1 ='4 A. The current on the RIGHT (at X2= d) has a current going into the page of the page of value, l2 = 6 A. The point "P" is at the location (x=6.00cm, z=10.4cm) Wire 1 Wire 2 a. Find the magnitude of the magnetic field due to wire 2 at the location of wire 1 The Biot-Savart law say the direction of the magnetic field at a field point located in a direction (from source to field point) where a source wire carries a current in the î is Pxi the direction of the magnetic field due to wire2 at the location of wire1. c. Using the formula format find the force per unit length in "I.j,k" 1, 1, x B, d. Find the magnitude of the magnetic field due to wire2 at the location of field point P e. Find the unit directions for f and î and perform the cross product to determine the direction of the magnetic field due to wire2 at the…arrow_forwardThe figure indicates one reason no one should stand under a tree during a lightning storm. If lightning comes down the side of the tree, a portion can jump over to the person, especially if the current on the tree reaches a dry region on the bark and thereafter must travel through air to reach the ground. In the figure, part of the lightning jumps through distance d in air and then travels through the person (who has negligible resistance relative to that of air). The rest of the current travels through air alongside the tree, for a distance h. If d/h = 0.431 and the total current is I = 5270 A, what is the current through the person? Number Units Lightning- current h d-arrow_forward
- The figure indicates one reason no one should stand under a tree during a lightning storm. If lightning comes down the side of the tree, a portion can jump over to the person, especially if the current on the tree reaches a dry region on the bark and thereafter must travel through air to reach the ground. In the figure, part of the lightning jumps through distance d in air and then travels through the person (who has negligible resistance relative to that of air). The rest of the current travels through air alongside the tree, for a distance h. If d/h = 0.408 and the total current is | = 5180 A, what is the current through the person? Number i Lightning- current h d Units Aarrow_forwardTwo VERY LONG wires are placed along parallel lines as shown below in the picture. LEFT (at Xı= 0) has a current going out of the page of value, I = 4 A. The current on the RIGHT (at X2= d) has a current going into the page of the page of value, 2 = 6 A. The point "P" is at the location (x=6.00cm, z=10.4cm) The wire ON THE d d Wire 1 Wire 2 a. Find the magnitude of the magnetic field due to wire 2 at the location of wire 1 The Biot-Savart law say the direction of the magnetic field at a field point located in a direction f (from source to field point) where a source wire carries a current in the direction î is îxî b. Find the unit directions for î and Î and perform the cross product to determine the direction of the magnetic field due to wire2 at the location of wire1. c. Using the formula format find the force per unit length in "Ij,k" = 1, I, x B, d. Find the magnitude of the magnetic field due to wire2 at the location of field point e. Find the unit directions for f and Î and…arrow_forwardA closed curve encircles several conductors. The line integral PB.dL around this curve is 3,83x104 T.m (a) What is the net current in the conductors? (b) If you were to integrate around the curve in the opposite direction, what would be the value of the line integral? Select one: lenci=D 305 A, 0.0 T.m lencl = 502 A, -3.83 x 10 4T.m lenci = 502 A, -7.66 x 104 T.m lencl = 600 A, -7.66 x 104T.m lencl = 305 A, -3.83 x 10 4 T.m lencl = 502 A, 0.0 T.m %3Darrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College