
(Modify weight in the nine tails problem) In the text, we assign the number of the flips as the weight for each move. Assuming the weight is three times of the number of flips, revise the

Program Plan:
- Create a package “main”.
- Add a java class named “Edge” to the package which is used to get the edges from the graph.
- Add a java class named “Graph” to the package which is used to add and remove vertices, edges.
- Add a java class named “UnweightedGraph” to the package which is used to store vertices and neighbors.
- Add a java class named “WeightedGraph” to the package which is used to get the weighted edges and print the edges.
- Add a java class named “WeightedEdge” to the package which is used to compare edges.
- Add a java class named “NineTailModel” to the package which is used to compare edges.
- Add a java class named “Test” to the package.
- Import the required packages.
- Declare the main class.
- Give the “main ()” method.
- Allocate the memory for the “Test” class.
- Define “Test”.
- Get the initial nine coins from the user.
- Create an object for the “ModifiedWeightedNineTailModel” class.
- Create an array list.
- Display the steps to flip the coin.
- Display the number of flips.
- Define “ModifiedWeightedNineTailModel” class.
- Create an edges and graph.
- Obtain a BSF tree rooted at the target node.
- Define “getEdges” method.
- Create an array list.
- Create all the edges for the graph by calling “getFlippedNode” and “getNumberOfFlips” methods.
- Add edge for a legal move from the node u to v.
- Return the edge.
- Define “getNumberOfFlips” method.
- Declare the required variables.
- Check if the “node1” is not equal to “node2” means increment the “count”.
- Return the value.
- Define “getNumberOfFlips” method.
- Return the total number of flips.
- Give the “main ()” method.
The given program is used to modify weight in the nine tails problem is as follows:
Explanation of Solution
Program:
Edge.java: Refer book from chapter 28 – Listing 28.1.
Graph.java: Refer book from chapter 28 – Listing 28.3.
UnweightedGraph.java: Refer book from chapter 28 – Listing 28.4.
WeightedGraph.java: Refer book from chapter 29 – Listing 29.2.
WeightedEdge.java: Refer book from chapter 29 – Listing 29.1.
NineTailModel.java: Refer book from chapter – Listing 28.13.
Test.java:
//import the required statement
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
//definition of "Test" class
public class Test
{
//main method
public static void main(String[] args)
{
//memory allocation
new Test();
}
//definition of "Test"
public Test()
{
// get the input from the user
System.out.print("Enter an initial nine coin H’s and T's: ");
Scanner input = new Scanner(System.in);
String s = input.nextLine();
//declare the variable
char[] initialNode = s.toCharArray();
//create an object
ModifiedWeightedNineTailModel model = new ModifiedWeightedNineTailModel();
//create an ArrayList
java.util.List<Integer> path =
model.getShortestPath (NineTailModel.getIndex(initialNode));
//display the steps to flip the coin
System.out.println("The steps to flip the coins are ");
for (int i = 0; i < path.size(); i++)
NineTailModel.printNode(
NineTailModel.getNode (path.get(i).intValue()));
//display the number of flips
System.out.println("The number of flips is " +
model.getNumberOfFlips (NineTailModel.getIndex(initialNode)));
}
//definition of "ModifiedWeightedNineTailModel"
public static class ModifiedWeightedNineTailModel extends NineTailModel
{
//constructor
public ModifiedWeightedNineTailModel()
{
// create edges
List<WeightedEdge> edges = getEdges();
// create a graph
WeightedGraph<Integer> graph = new WeightedGraph<Integer>(
edges, NUMBER_OF_NODES);
/* obtain a BSF tree rooted at the target node*/
tree = graph.getShortestPath(511);
}
//definition of "getEdge" method
private List<WeightedEdge> getEdges()
{
// create an ArrayList
List<WeightedEdge> edges = new ArrayList<WeightedEdge>();
//check the condition
for (int u = 0; u < NUMBER_OF_NODES; u++)
{
//check the condition
for (int k = 0; k < 9; k++)
{
// get the node for vertex u
char[] node = getNode(u);
//check the condition
if (node[k] == 'H')
{
/*call the "getFlippedNode" method*/
int v = getFlippedNode(node, k);
int numberOfFlips = getNumberOfFlips(u, v);
/* add edge for a legal move from node u to node v*/
edges.add(new WeightedEdge(v, u, numberOfFlips));
}
}
}
//return statement
return edges;
}
//definition of "getNumberOfFlips" method
private static int getNumberOfFlips(int u, int v)
{
//declare the variables
char[] node1 = getNode(u);
char[] node2 = getNode(v);
int count = 0;
//check the condition
for (int i = 0; i < node1.length; i++)
//check the condition
if (node1[i] != node2[i]) count++;
//return statement
return 3 * count;
}
//definition of "getNumberOfFlips" method
public int getNumberOfFlips(int u)
{
//return statement
return (int)((WeightedGraph<Integer>.ShortestPathTree)tree).getCost(u);
}
}
}
Enter an initial nine coin H’s and T's: HHHTTTHHH
The steps to flip the coins are
HHH
TTT
HHH
HHH
THT
TTT
TTT
TTT
TTT
The number of flips is 24
Want to see more full solutions like this?
Chapter 29 Solutions
MyLab Programming with Pearson eText -- Access Card -- for Introduction to Java Programming and Data Structures, Comprehensive Version
Additional Engineering Textbook Solutions
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
Mechanics of Materials (10th Edition)
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
Modern Database Management
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
- Discussion 1. Comment on your results. 2. Compare between the practical and theoretical results. 3. Find VB, Vc on the figure below: 3V V₁₁ R₁ B IR, R, IR, R www ΙΚΩ www www I 1.5KQ 18₁ 82002 R₁ 3.3KQ R₂ 2.2KQ E Darrow_forwardAgile1. a. Describe it and how it differs from other SDLC approachesb. List and describe the two primary terms for the agile processc. What are the three activities in the Construction phasearrow_forwardhow are youarrow_forward
- need help with thi Next, you are going to combine everything you've learned about HTML and CSS to make a static site portfolio piece. The page should first introduce yourself. The content is up to you, but should include a variety of HTML elements, not just text. This should be followed by an online (HTML-ified) version of your CV (Resume). The following is a minimum list of requirements you should have across all your content: Both pages should start with a CSS reset (imported into your CSS, not included in your HTML) Semantic use of HTML5 sectioning elements for page structure A variety other semantic HTML elements Meaningful use of Grid, Flexbox and the Box Model as appropriate for different layout components A table An image Good use of CSS Custom Properties (variables) Non-trivial use of CSS animation Use of pseudeo elements An accessible colour palette Use of media queries The focus of this course is development, not design. However, being able to replicate a provided design…arrow_forwardUsing the notationarrow_forwardyou can select multipy optionsarrow_forwardFor each of the following, decide whether the claim is True or False and select the True ones: Suppose we discover that the 3SAT can be solved in worst-case cubic time. Then it would mean that all problems in NP can also be solved in cubic time. If a problem can be solved using Dynamic Programming, then it is not NP-complete. Suppose X and Y are two NP-complete problems. Then, there must be a polynomial-time reduction from X to Y and also one from Y to X.arrow_forwardMaximum Independent Set problem is known to be NP-Complete. Suppose we have a graph G in which the maximum degree of each node is some constant c. Then, is the following greedy algorithm guaranteed to find an independent set whose size is within a constant factor of the optimal? 1) Initialize S = empty 2) Arbitrarily pick a vertex v, add v to S delete v and its neighbors from G 3) Repeat step 2 until G is empty Return S Yes Noarrow_forwardPlease help me answer this coding question in the images below for me(it is not a graded question):write the code using python and also provide the outputs requiredarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- C++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology PtrC++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningMicrosoft Visual C#Computer ScienceISBN:9781337102100Author:Joyce, Farrell.Publisher:Cengage Learning,


