The conducting rod ab shown in Fig. E29.29 makes contact with metal rails ca and db . The apparatus is in a uniform magnetic field of 0.800 T. perpendicular to the plane of the figure. (a) Find the magnitude of the emf induced in the rod when it is moving toward the right with a speed 7.50 m/s. (b) In what direction does the current flow in the rod? (c) If the resistance of the circuit abdc is 1.50 Ω (assumed to be constant), find the force (magnitude and direction) required to keep the rod moving to the right with a constant speed of 7.50 m/s. You can ignore friction. (d) Compare the rate at which mechanical work is done by the force (F ʋ ) with the rate at which thermal energy is developed in the circuit ( I 2 R ?). Figure E29.29
The conducting rod ab shown in Fig. E29.29 makes contact with metal rails ca and db . The apparatus is in a uniform magnetic field of 0.800 T. perpendicular to the plane of the figure. (a) Find the magnitude of the emf induced in the rod when it is moving toward the right with a speed 7.50 m/s. (b) In what direction does the current flow in the rod? (c) If the resistance of the circuit abdc is 1.50 Ω (assumed to be constant), find the force (magnitude and direction) required to keep the rod moving to the right with a constant speed of 7.50 m/s. You can ignore friction. (d) Compare the rate at which mechanical work is done by the force (F ʋ ) with the rate at which thermal energy is developed in the circuit ( I 2 R ?). Figure E29.29
The conducting rod ab shown in Fig. E29.29 makes contact with metal rails ca and db. The apparatus is in a uniform magnetic field of 0.800 T. perpendicular to the plane of the figure. (a) Find the magnitude of the emf induced in the rod when it is moving toward the right with a speed 7.50 m/s. (b) In what direction does the current flow in the rod? (c) If the resistance of the circuit abdc is 1.50 Ω (assumed to be constant), find the force (magnitude and direction) required to keep the rod moving to the right with a constant speed of 7.50 m/s. You can ignore friction. (d) Compare the rate at which mechanical work is done by the force (Fʋ) with the rate at which thermal energy is developed in the circuit (I2R?).
y[m]
The figure shows two snapshots of a single wave on a string. The wave is
traveling to the right in the +x direction. The solid line is a snapshot of the wave
at time t=0 s, while the dashed line is a snapshot of the wave at t=0.48s.
0
0.75
1.5
2.25
3
8
8
6
6
4
2
4
2
0
-2
-2
-4
-4
-6
-6
-8
-8
0
0.75
1.5
2.25
3
x[m]
Determine the period of the wave in units of seconds.
Enter your numerical answer below including at least 3 significant figures. Do
not enter a fraction, do not use scientific notation.
No chatgpt pls will upvote
An extremely long, solid nonconducting cylinder has a radius Ro. The charge density within the cylinder is a
function of the distance R from the axis, given by PE (R) = po(R/Ro)², po > 0.
Chapter 29 Solutions
University Physics with Modern Physics, Books a la Carte Edition; Modified MasteringPhysics with Pearson eText -- ValuePack Access Card -- for ... eText -- Valuepack Access Card (14th Edition)
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.