EBK COLLEGE PHYSICS
EBK COLLEGE PHYSICS
2nd Edition
ISBN: 9780134605500
Author: ETKINA
Publisher: PEARSON CO
bartleby

Concept explainers

Question
Book Icon
Chapter 29, Problem 1RQ
To determine

The predictions that conclude that radioactive emission consists of positively charged particles, negatively charged particles, and neutral particles.

Expert Solution & Answer
Check Mark

Answer to Problem 1RQ

Solution:

Testing the deflection of radiation in the magnetic field leads to the conclusion that radioactive emission consists of positively charged particles, negatively charged particles, and neutral particles.

Explanation of Solution

Introduction:

Rutherford, in 1899, conducted an experiment in which he set up two parallel metal plates with potential difference between them. Because of the dielectric between them, there was no current in the circuit. Then, he placed a uranium sample between the metal plate gap and observed that there was current in the circuit. This current was due to the ions and free electrons created by the uranium’s radiation. Rutherford covered the uranium sample with a thin aluminum sheet to study how the metal layer affected the amount of radiation. He observed that there was a decrease in the induced current on addition of more sheets to a point after which the current becomes constant. Therefore, he concluded that the radiation consists of at least two components, one of which got absorbed by an aluminum sheet, which consisted of charged particles.

EBK COLLEGE PHYSICS                    , Chapter 29, Problem 1RQ , additional homework tip  1

Explanation:

By passing radiation through a magnetic field, the behavior of particles in radiation can be observed.

Rutherford conducted an experiment where the radiation emitting from a radioactive sample passes through a EBK COLLEGE PHYSICS                    , Chapter 29, Problem 1RQ , additional homework tip  2 field pointing into the page, and allowed them to fall on a scintillation screen placed perpendicular to the incident beam.

EBK COLLEGE PHYSICS                    , Chapter 29, Problem 1RQ , additional homework tip  3

By the right-hand rule, if radiation contains positively charged particles, then the particle should deflect upwards due to the magnetic field. And, if radiation contains negatively charged particles, it should deflect downwards on the scintillation screen.

The outcome was that the scintillation screen glowed in three places: straight ahead, deflected up, and deflected down. And, the downward deflection was much farther than the upward deflection from the un-deflected radiation.

EBK COLLEGE PHYSICS                    , Chapter 29, Problem 1RQ , additional homework tip  4

Conclusion:

So, the experiment suggested that the radioactive radiation consists of three components: positively charged particles (alpha particles), negatively charged particles (beta particles), and neutral particles (gamma rays) that were not deflected by the magnetic field.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A uniform ladder of length L and weight w is leaning against a vertical wall. The coefficient of static friction between the ladder and the floor is the same as that between the ladder and the wall. If this coefficient of static friction is μs : 0.535, determine the smallest angle the ladder can make with the floor without slipping. ° = A 14.0 m uniform ladder weighing 480 N rests against a frictionless wall. The ladder makes a 55.0°-angle with the horizontal. (a) Find the horizontal and vertical forces (in N) the ground exerts on the base of the ladder when an 850-N firefighter has climbed 4.10 m along the ladder from the bottom. horizontal force magnitude 342. N direction towards the wall ✓ vertical force 1330 N up magnitude direction (b) If the ladder is just on the verge of slipping when the firefighter is 9.10 m from the bottom, what is the coefficient of static friction between ladder and ground? 0.26 × You appear to be using 4.10 m from part (a) for the position of the…
Your neighbor designs automobiles for a living. You are fascinated with her work. She is designing a new automobile and needs to determine how strong the front suspension should be. She knows of your fascination with her work and your expertise in physics, so she asks you to determine how large the normal force on the front wheels of her design automobile could become under a hard stop, ma when the wheels are locked and the automobile is skidding on the road. She gives you the following information. The mass of the automobile is m₂ = 1.10 × 103 kg and it can carry five passengers of average mass m = 80.0 kg. The front and rear wheels are separated by d = 4.45 m. The center of mass of the car carrying five passengers is dCM = 2.25 m behind the front wheels and hcm = 0.630 m above the roadway. A typical coefficient of kinetic friction between tires and roadway is μk 0.840. (Caution: The braking automobile is not in an inertial reference frame. Enter the magnitude of the force in N.)…
John is pushing his daughter Rachel in a wheelbarrow when it is stopped by a brick 8.00 cm high (see the figure below). The handles make an angle of 0 = 17.5° with the ground. Due to the weight of Rachel and the wheelbarrow, a downward force of 403 N is exerted at the center of the wheel, which has a radius of 16.0 cm. Assume the brick remains fixed and does not slide along the ground. Also assume the force applied by John is directed exactly toward the center of the wheel. (Choose the positive x-axis to be pointing to the right.) (a) What force (in N) must John apply along the handles to just start the wheel over the brick? (No Response) N (b) What is the force (magnitude in kN and direction in degrees clockwise from the -x-axis) that the brick exerts on the wheel just as the wheel begins to lift over the brick? magnitude (No Response) KN direction (No Response) ° clockwise from the -x-axis

Chapter 29 Solutions

EBK COLLEGE PHYSICS

Ch. 29 - Prob. 2MCQCh. 29 - Prob. 3MCQCh. 29 - Prob. 4MCQCh. 29 - Prob. 5MCQCh. 29 - Prob. 6MCQCh. 29 - Prob. 7MCQCh. 29 - Prob. 8MCQCh. 29 - Prob. 9MCQCh. 29 - Prob. 10MCQCh. 29 - Prob. 11CQCh. 29 - Prob. 12CQCh. 29 - Prob. 13CQCh. 29 - Prob. 14CQCh. 29 - How did Rutherford determine that radioactivity...Ch. 29 - Prob. 16CQCh. 29 - Prob. 17CQCh. 29 - Prob. 18CQCh. 29 - Prob. 19CQCh. 29 - Prob. 20CQCh. 29 - Prob. 21CQCh. 29 - Prob. 22CQCh. 29 - Prob. 1PCh. 29 - Prob. 2PCh. 29 - Prob. 3PCh. 29 - Prob. 4PCh. 29 - Prob. 6PCh. 29 - Prob. 7PCh. 29 - Prob. 8PCh. 29 - Prob. 9PCh. 29 - Prob. 10PCh. 29 - Prob. 11PCh. 29 - Prob. 12PCh. 29 - Prob. 13PCh. 29 - Prob. 14PCh. 29 - Prob. 15PCh. 29 - Prob. 16PCh. 29 - Prob. 17PCh. 29 - Prob. 18PCh. 29 - Prob. 19PCh. 29 - Prob. 20PCh. 29 - Prob. 21PCh. 29 - Prob. 22PCh. 29 - 23. * Another Sun process A series of reactions...Ch. 29 - Prob. 24PCh. 29 - Prob. 25PCh. 29 - Prob. 27PCh. 29 - Prob. 28PCh. 29 - Prob. 29PCh. 29 - Prob. 30PCh. 29 - Prob. 31PCh. 29 - Prob. 32PCh. 29 - Prob. 33PCh. 29 - Prob. 34PCh. 29 - Prob. 35PCh. 29 - Prob. 36PCh. 29 - 37. * Cesium-137, a waste product of nuclear...Ch. 29 - Prob. 38PCh. 29 - Prob. 39PCh. 29 - Prob. 40PCh. 29 - Prob. 41PCh. 29 - Prob. 42PCh. 29 - Prob. 43PCh. 29 - Prob. 44PCh. 29 - Prob. 45PCh. 29 - Prob. 46PCh. 29 - Prob. 47PCh. 29 - Prob. 48PCh. 29 - Prob. 49PCh. 29 - Prob. 50PCh. 29 - Prob. 52PCh. 29 - Prob. 53PCh. 29 - Prob. 54PCh. 29 - Prob. 55PCh. 29 - Prob. 56PCh. 29 - Prob. 57GPCh. 29 - Prob. 59GPCh. 29 - Prob. 60GPCh. 29 - Prob. 61GPCh. 29 - Prob. 62GPCh. 29 - Prob. 63GPCh. 29 - Prob. 64GPCh. 29 - Prob. 65GPCh. 29 - Prob. 66GPCh. 29 - Prob. 67GPCh. 29 - Prob. 68GPCh. 29 - Prob. 69GPCh. 29 - Prob. 70GPCh. 29 - Prob. 71GPCh. 29 - Prob. 72RPPCh. 29 - Prob. 73RPPCh. 29 - Prob. 74RPPCh. 29 - Prob. 75RPPCh. 29 - Prob. 76RPPCh. 29 - Prob. 77RPPCh. 29 - Prob. 78RPPCh. 29 - Prob. 79RPPCh. 29 - Prob. 80RPPCh. 29 - Prob. 81RPP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning