Concept explainers
The lightweight glass sphere in FIGURE Q29.1 hangs by a thread. The north pole of a bar magnet is brought near the sphere.
a. Suppose the sphere is electrically neutral. Is it attracted to, repelled by, or not affected by the magnet? Explain.
b. Answer the same question if the sphere is positively charged.
(a)
The effect of a bar magnet on a glass sphere placed near it.
Explanation of Solution
Given Info:
A glass sphere is hanging from a thread and North Pole of a magnet bar is brought near it.
Since magnetic materials are generally made up of iron and other metals. Moreover, this arises because of intrinsic magnetic moment present in the electrons called as electron spin; but here the material is glass and it happens to be an insulator. Hence, glass is not a magnetic material. Therefore, there is no effect of bar magnet over the glass sphere.
(b)
The effect of a bar magnet over a positively charged glass sphere placed near it.
Explanation of Solution
Given Info:
A positively charged glass sphere is hanging from a thread and North Pole of a magnet bar is brought near it.
There is no magnetic force between the glass sphere and bar magnet since they act on moving charges and other metals. There is a weak attraction due to polarization of charges present on the surface of glass if a magnetic bar is present.
Conclusion:
a) No, there is no attraction or repulsion between the glass sphere and the bar magnet.
b) Yes, the charges present on the glass surface are somewhat attracted to bar magnet.
Want to see more full solutions like this?
Chapter 29 Solutions
Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
Additional Science Textbook Solutions
The Cosmic Perspective (8th Edition)
Human Anatomy & Physiology (2nd Edition)
Anatomy & Physiology (6th Edition)
Cosmic Perspective Fundamentals
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Microbiology: An Introduction
- (a) A physicist performing a sensitive measurement wants to limit the magnetic force on a moving charge in her equipment to less than 1.001012N. What is the greatest the charge can be if it moves at a maximum speed of 30.0 m/s in Earth's field? (b) Discuss whether it would be difficult to limit the charge to less than the value found in (a) by comparing it with typical static electricity' and noting that static is often absent,arrow_forward(a) A proton moving with velocity v=ii experiences a magnetic force F=Fij. Explain what you can and cannot infer about B from this information. (b) What If? In terms of Fi, what would be the force on a proton in the same field moving with velocity v=ii? (c) What would be the force on an electron in the same field moving with velocity v=ii?arrow_forward(a) An oxygen16 ion with a mass at 2.661026kg travels at 5.00106m/s perpendicular to a 1.20T magnetic field, which makes it move in a circular arc with a 0.231-m radius. What positive charge is on the ion? (b) What is the radio of this charge to the charge of an electron? (c) Discuss why the radio found in (b) should be an integer.arrow_forward
- (a)What is the angle between a wire carrying an 8.00-A current and the 1.20-T field It Is in if 50.0 cm of the wire experiences a magnetic force of 2.40 N? (b) What is the force on the wire If It Is rotated to make an angle of 90° with the field?arrow_forwardA uniform magnetic field of magnitude is directed parallel to the z-axis. A proton enters the field with a velocity v=(4j+3k)106m/s and travels in a helical path with a radius of 5.0 cm. (a) What is the value of B? (b) What is the time required for one trip around the helix? (c) Where is the proton 5.0107s after entering the field?arrow_forward(a) A cosmic ray proton moving toward the Earth at 5.00107m/s experiences a magnetic force of 1.701016N. What is the strength of the magnetic field it there is a 45° angle between it and the proton’s velocity? (b) Is the value obtained in part (a) consistent with the known strength of the Earth’s magnetic field on its surface? Discuss.arrow_forward
- An electron in a TV CRT moves with a speed at 6.00107m/s, in a direction perpendicular to the Earth’s field, which has a strength of 5.00105T. (a) What strength electric field must be applied perpendicular to the Earth’s field to make the election moves in a straight line? (b) If this is done between plates separated by 1.00 cm, what is the voltage applied? (Note that TVs are usually surrounded by a ferromagnetic material to shield against external magnetic fields and avoid the need for such a correction.)arrow_forwardAnswer each question yes or no. (a) Is it possible for each of three stationary charged particles to exert a force of attraction on the other two? (b) Is it possible for each of three stationary charged particles to repel both of the other particles? (c) Is it possible for each of three current-carrying metal wires to attract the other two wires? (d) Is it possible for each of three currents carrying metal wires to repel the other two wires? Andre-Marie Amperes experiments on electromagnetism are models of logical precision and included observation of the phenomena referred to in this question.arrow_forwardAn electron in a TV CRT moves with a speed of 6.0107 m/s, in a direction perpendicular to Earth's field, which has a strength of 5.0105 T. (a) What strength electric field must be applied perpendicular to the Earth’s field to make the election moves in a straight line? (b) If this is done between plates separated by 1.00 cm, what is the voltage applied? (Note that TVs are usually surrounded by a ferromagnetic material to shield against external magnetic fields and avoid the need for such a collection,)arrow_forward
- Unreasonable Results (a) Find the charge on a baseball, thrown at 35.0 m/s perpendicular to the Earth’s 5.00105T field, that experiences a 1.00-N magnetic force. (b) What is unreasonable about this result? (c) Which assumption or premise is responsible?arrow_forwardA circular coil with 200 turns Las a radius of 2.0 cm. (a) What current through tire coil results in a magnetic dipole moment of 3.0 Am2? (b) What is the maximum torque that the coil will experience in a uniform field of strength 5.0102 ? (c) If tire angle between and B is 45°, what is the magnitude of tire torque on the coil? (d) What is the magnetic potential energy of coil for this orientation?arrow_forwardThe magnetic dipole moment of the iron atom is about 2.11023Am2 . (a) Calculate the maximum magnetic dipole moment of a domain consisting of 1019 iron atoms, (b) What current would have to flow through a single circular loop of wire of diameter 1.0 cm to produce this magnetic dipole moment?arrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning