
(a)
To Find:
The resistance and inductive reactance of the plant’s total load.
(a)

Answer to Problem 18P
Resistance
Explanation of Solution
Given:
Operated power of plant is
Voltage supply to the plant is
Frequency supply to the plant is
Resistance of the transmission line in
Phase
Formula used:
The relation between
Impedance in terms of
Average power
Calculation:
From equation (3) rms current can be rewritten as
Substitute the value
Substitute the values:
=
Conclusion:
Hence, theResistance
(b)
To Find:
RMS current and RMS voltage of the power line.
(b)

Answer to Problem 18P
Explanation of Solution
Given:
Operated power of plant is
Voltage supply to the plant is
Frequency supply to the plant is
Resistance of the transmission line in
Phase
Formula use:
RMS current
Calculation:
Substituting the values of
Apply Kirchhoff’s loop principle to the circuit:
Substituting the value of
Conclusion:
Hence,RMS current and RMS voltage are
(c)
To Find:
Amount of power lost in transmission.
(c)

Answer to Problem 18P
Explanation of Solution
Given:
Resistance of the transmission line in
Transmission current
Formula use:
Transmission power
Calculation:
Substituting the value of
Conclusion:
Hence,the power loss in the transmission line is
(d)
To Find:
The amount of money that would be saved by the electric utility during one month of operation.
(d)

Answer to Problem 18P
$128
Explanation of Solution
Given:
Phase angle between voltage and current
Operated power of plant is
Voltage supply to the plant is
Frequency supply to the plant is
Resistance of the transmission line in
Formula used:
Cost saving equation
Transmission power
RMS current
Calculation:
Substituting the value of
Substituting the value of
Cost saving is
Conclusion:
Hence, the cost is
(e)
To Find:
The amount ofcapacitance required to achieve the charge.
(e)

Answer to Problem 18P
Explanation of Solution
Given:
Phase angle between voltage and current
Operated power of plant is
Voltage supply to the plant is
Frequency supply to the plant is
Resistance of the transmission line in
Saved cost per kilowatt-hour is $128.
Formula used:
Capacitance
Relation between
Conclusion:
From equation (2)
Substituting the value of
Conclusion:
Hence, the required capacitance is
Want to see more full solutions like this?
Chapter 29 Solutions
Physics for Scientists and Engineers
- You are standing a distance x = 1.75 m away from this mirror. The object you are looking at is y = 0.29 m from the mirror. The angle of incidence is θ = 30°. What is the exact distance from you to the image?arrow_forwardFor each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank youarrow_forwardA planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).arrow_forward
- What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forwardsimple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forward
- An L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forward
- Discuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forwardExplain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning




