![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781429281843/9781429281843_largeCoverImage.jpg)
(a)
To Find:
The resistance and inductive reactance of the plant’s total load.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 18P
Resistance
Explanation of Solution
Given:
Operated power of plant is
Voltage supply to the plant is
Frequency supply to the plant is
Resistance of the transmission line in
Phase
Formula used:
The relation between
Impedance in terms of
Average power
Calculation:
From equation (3) rms current can be rewritten as
Substitute the value
Substitute the values:
=
Conclusion:
Hence, theResistance
(b)
To Find:
RMS current and RMS voltage of the power line.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 18P
Explanation of Solution
Given:
Operated power of plant is
Voltage supply to the plant is
Frequency supply to the plant is
Resistance of the transmission line in
Phase
Formula use:
RMS current
Calculation:
Substituting the values of
Apply Kirchhoff’s loop principle to the circuit:
Substituting the value of
Conclusion:
Hence,RMS current and RMS voltage are
(c)
To Find:
Amount of power lost in transmission.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 18P
Explanation of Solution
Given:
Resistance of the transmission line in
Transmission current
Formula use:
Transmission power
Calculation:
Substituting the value of
Conclusion:
Hence,the power loss in the transmission line is
(d)
To Find:
The amount of money that would be saved by the electric utility during one month of operation.
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 18P
$128
Explanation of Solution
Given:
Phase angle between voltage and current
Operated power of plant is
Voltage supply to the plant is
Frequency supply to the plant is
Resistance of the transmission line in
Formula used:
Cost saving equation
Transmission power
RMS current
Calculation:
Substituting the value of
Substituting the value of
Cost saving is
Conclusion:
Hence, the cost is
(e)
To Find:
The amount ofcapacitance required to achieve the charge.
(e)
![Check Mark](/static/check-mark.png)
Answer to Problem 18P
Explanation of Solution
Given:
Phase angle between voltage and current
Operated power of plant is
Voltage supply to the plant is
Frequency supply to the plant is
Resistance of the transmission line in
Saved cost per kilowatt-hour is $128.
Formula used:
Capacitance
Relation between
Conclusion:
From equation (2)
Substituting the value of
Conclusion:
Hence, the required capacitance is
Want to see more full solutions like this?
Chapter 29 Solutions
Physics for Scientists and Engineers
- Problem Eight. A snowmobile is originally at the point with position vector 31.1 m at 95.5° counterclockwise from the x-axis, moving with velocity 4.89 m/s at 40.0°. It moves with constant acceleration 1.73 m/s² at 200°. After 5.00 s have elapsed, find the following. 9.) The velocity vector in m/s. (A)=-4.38+0.185ĵ (D) = 0.185 +4.38ĵ (B)=0.1851-4.38ĵ (E) = 4.38 +0.185ĵ (C) v=-0.1851-4.38ĵ (A)=-39.3-4.30ĵ 10.) The final position vector in meters. (B)=39.3-4.30ĵ (C) = -4.61 +39.3ĵ (D) = 39.31 +4.30ĵ (E) = 4.30 +39.3ĵarrow_forwardProblem Seven. A football receiver running straight downfield at 5.60 m/s is 11.5 m in front of the quarterback when a pass is thrown downfield at an angle of 35.0° above the horizon. 8.) If the receiver never changes speed and the ball is caught at the same height from which it was thrown, find the distance between the quarterback and the receiver when the catch is made. (A) 21.3 (B) 17.8 (C) 18.8 (D) 19.9 (E) 67.5arrow_forward3 Consider a ball sliding down a ramp as shown above. The ball is already in motion at the position 1. Which direction best approximates the direction of instantaneous velocity vector V when the object is at position 3?arrow_forward
- No chatgpt plsarrow_forwardA car in a roller coaster moves along a track that consists of a sequence of ups and downs. Let the x axis be parallel to the ground and the positive y axis point upward. In the time interval from t 0 tot = = 4s, the trajectory of the car along a certain section of the track is given by 7 = A(1 m/s)ti + A [(1 m/s³) t³ - 6(1 m/s²)t²]ĵ where A is a positive dimensionless constant. At t car ascending or descending? = 2.0 S is the roller coaster Ascending. Descending.arrow_forwardneed help on first part its not 220arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168161/9781938168161_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)