
Concept explainers
Identify the following bases, and tell whether each is found in DNA, RNA, or both:

a)
Interpretation:
To identify the following bases and state whether each lie in DNA, RNA or both.
Concept introduction:
Proteins and biopolymers are made up of amino acids, nucleic acids which are joined together to form a long chain. Nucleic acids are the biopolymers of nucleotides, which is composed of a nucleoside. Each nucleoside is bonded to a phosphate group.
Each nucleoside is composed of an aldopentose sugar linked through its anomeric carbon to the nitrogen atom of a heterocyclic purine or pyrimidine base. RNA contains ribose as a sugar component and DNA contains 29-deoxyribose as a sugar component.
DNA contains four different amine bases: two substituted purines (adenine and guanine) and two substituted pyrimidines (cytosine and thymine). Adenine, guanine, and cytosine also occur in RNA, but thymine is replaced in RNA by a closely related pyrimidine base called uracil.
Answer to Problem 13VC
The base given here is: Guanine (G)
It is found in both DNA and RNA.
Explanation of Solution
In the above diagrams of bases, guanine and cytosine are found in DNA and RNA. Whereas, uracil is found in only RNA. Here the blue atoms are the symbols for nitrogen, red atom represents oxygen, black atom represents carbon and grey atom represnts hydrogen.
The base given here is: Guanine (G)
It is found in both DNA and RNA.

b)
Interpretation:
To identify the following bases and state whether each lie in DNA, RNA or both.
Concept introduction:
Proteins and biopolymers are made up of amino acids, nucleic acids which are joined together to form a long chain. Nucleic acids are the biopolymers of nucleotides, which is composed of a nucleoside. Each nucleoside is bonded to a phosphate group.
Each nucleoside is composed of an aldopentose sugar linked through its anomeric carbon to the nitrogen atom of a heterocyclic purine or pyrimidine base. RNA contains ribose as a sugar component and DNA contains 29-deoxyribose as a sugar component.
DNA contains four different amine bases: two substituted purines (adenine and guanine) and two substituted pyrimidines (cytosine and thymine). Adenine, guanine, and cytosine also occur in RNA, but thymine is replaced in RNA by a closely related pyrimidine base called uracil.
Answer to Problem 13VC
The base given here is: Uracil (U)
It is found in RNA.
Explanation of Solution
In the above diagrams of bases, guanine and cytosine are found in DNA and RNA. Whereas, uracil is found in only RNA. Here the blue atoms are the symbols for nitrogen, red atom represents oxygen, black atom represents carbon and grey atom represnts hydrogen.
The base given here is: Uracil (U)
It is found in RNA.

c)
Interpretation:
To identify the following bases and state whether each lie in DNA, RNA or both.
Concept introduction:
Proteins and biopolymers are made up of amino acids, nucleic acids which are joined together to form a long chain. Nucleic acids are the biopolymers of nucleotides, which is composed of a nucleoside. Each nucleoside is bonded to a phosphate group.
Each nucleoside is composed of an aldopentose sugar linked through its anomeric carbon to the nitrogen atom of a heterocyclic purine or pyrimidine base. RNA contains ribose as a sugar component and DNA contains 29-deoxyribose as a sugar component.
DNA contains four different amine bases: two substituted purines (adenine and guanine) and two substituted pyrimidines (cytosine and thymine). Adenine, guanine, and cytosine also occur in RNA, but thymine is replaced in RNA by a closely related pyrimidine base called uracil.
Answer to Problem 13VC
The base given here is: Cytosine (C)
It is found in both DNA and RNA.
Explanation of Solution
In the above diagrams of bases, guanine and cytosine are found in DNA and RNA. Whereas, uracil is found in only RNA. Here the blue atoms are the symbols for nitrogen, red atom represents oxygen, black atom represents carbon and grey atom represnts hydrogen.
The base given here is: Cytosine (C)
It is found in both DNA and RNA.
Want to see more full solutions like this?
Chapter 28 Solutions
Organic Chemistry - With Access (Custom)
Additional Science Textbook Solutions
Applications and Investigations in Earth Science (9th Edition)
Organic Chemistry
General, Organic, and Biological Chemistry - 4th edition
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
The Cosmic Perspective (8th Edition)
- Calculate the pH of 0.015 M HCl.arrow_forwardCalculate the pH of 0.450 M KOH.arrow_forwardWhich does NOT describe a mole? A. a unit used to count particles directly, B. Avogadro’s number of molecules of a compound, C. the number of atoms in exactly 12 g of pure C-12, D. the SI unit for the amount of a substancearrow_forward
- 5 What would the complete ionic reaction be if aqueous solutions of potassium sulfate and barium acetate were mixed? ed of Select one: O a 2 K SO4 + Ba2 +2 C₂H3O21 K+SO4 + Ba2+ + 2 C2H3O21 K+SO42 + Ba2 +2 C2H3O2 BaSO4 +2 K+ + 2 C2H3O estion Ob. O c. Od. 2 K SO4 +Ba2 +2 C₂H₂O₂ BaSO4 + K+ + 2 C2H3O BaSO4 + K + 2 C2H301 →Ba² +SO42 +2 KC2H3O s pagearrow_forward(28 pts.) 7. Propose a synthesis for each of the following transformations. You must include the reagents and product(s) for each step to receive full credit. The number of steps is provided. (OC 4) 4 steps 4 steps OH b.arrow_forwardLTS Solid: AT=Te-Ti Trial 1 Trial 2 Trial 3 Average ΔΗ Mass water, g 24.096 23.976 23.975 Moles of solid, mol 0.01763 001767 0101781 Temp. change, °C 2.9°C 11700 2.0°C Heat of reaction, J -292.37J -170.473 -193.26J AH, kJ/mole 16.58K 9.647 kJ 10.85 kr 16.58K59.64701 KJ mol 12.35k Minimum AS, J/mol K 41.582 mol-k Remember: q = mCsAT (m = mass of water, Cs=4.184J/g°C) & qsin =-qrxn & Show your calculations for: AH in J and then in kJ/mole for Trial 1: qa (24.0969)(4.1845/g) (-2.9°C)=-292.37J qsin = qrxn = 292.35 292.37J AH in J = 292.375 0.2923kJ 0.01763m01 =1.65×107 AH in kJ/mol = = 16.58K 0.01763mol mol qrx Minimum AS in J/mol K (Hint: use the average initial temperature of the three trials, con Kelvin.) AS=AHIT (1.65×10(9.64×103) + (1.0 Jimaiarrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,




