Physics
Physics
3rd Edition
ISBN: 9781259233616
Author: GIAMBATTISTA
Publisher: MCG
bartleby

Concept explainers

Question
Book Icon
Chapter 28, Problem 73P

(a)

To determine

The sketches of the wave function of a particle confined in a finite box.

(a)

Expert Solution
Check Mark

Answer to Problem 73P

The wave function is given below.

Explanation of Solution

For a particle in a box, the wave function in the nth state has n1 nodes.

For n=1 state, the wave function is given below:

Physics, Chapter 28, Problem 73P , additional homework tip  1

Since the wave function is a sinusoidal curve decaying outside the box, the box contains less than half the wavelength. Thus,

λ2>L and λ<

i.e.λ>2L1 and λ<2L11

Here, λ is the wavelength and L is the length of the box.

For n=2 state, the wave function is given below:

Physics, Chapter 28, Problem 73P , additional homework tip  2

Since the wave function is a sinusoidal curve decaying outside the box, the box contains less than one wavelength and more than half the wavelength.

λ>L and λ<2L

i.e.λ>2L2 and λ<2L21

For n=3 state, the wave function is given below:

Physics, Chapter 28, Problem 73P , additional homework tip  3

Since the wave function is a sinusoidal curve decaying outside the box, the box contains less than 1.5 times the wavelength but more than one wavelength.

3λ2>L and λ<L

i.e.λ>3L2 and λ<2L31

From all the above given wave functions, it can be generalised that

2Ln<λn<2Ln1                                                             (I)

Here, λn is the wave function of the nth state.

(b)

To determine

Check whether the condition (n1)2E1<En<n2E1  is satisfied for a particle confined in a finite box.

(b)

Expert Solution
Check Mark

Answer to Problem 73P

Yes. The given condition is valid for a particle confined in a finite box.

Explanation of Solution

The energy of 3d level is 1.6 eV and the energy of 3p level is 3.0 eV.

Write the expression for energy of a particle in a infinite box in terms of wavelength

En=h22mλn2                                                                    (II)

Here, En is the energy of the nth state, h is the Planck’s constant and m is the mass of the particle.

Rearranging (II) for λn2

λn2=h22mEn                                                           (III)

Write the expression for ground state energy

E1=h28mL2                                                           (IV)

Write expression (I)

2Ln<λn<2Ln1                                                            (I)

Taking reciprocal and squaring (I)

(n1)2(2L)2<1λn2<n2(2L)2                                                             (V)

While taking reciprocal, the direction of inequality changes.

Multiplying (III) by E1(2L)2

(n1)2E1<(2L)2E1λn2<n2E1                                                         (VI)

Substituting (III) in (VI)

(n1)2E1<(2L)2E12mEnh2<n2E1                                                          (VII)

Substituting for E1 from (IV) in (VII)

(n1)2E1<(h28mL2)8mL2Enh2<n2E1

Cancelling out the common terms in numerator and denominator

(n1)2E1<En<n2E1

Thus, the given condition is valid.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
You are standing a distance x = 1.75 m away from this mirror. The object you are looking at is y = 0.29 m from the mirror. The angle of incidence is θ = 30°. What is the exact distance from you to the image?
For each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank you
A planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).

Chapter 28 Solutions

Physics

Ch. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQCh. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQCh. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 16CQCh. 28 - Prob. 17CQCh. 28 - Prob. 18CQCh. 28 - Prob. 1MCQCh. 28 - Prob. 2MCQCh. 28 - Prob. 3MCQCh. 28 - Prob. 4MCQCh. 28 - Prob. 5MCQCh. 28 - Prob. 6MCQCh. 28 - Prob. 7MCQCh. 28 - Prob. 8MCQCh. 28 - Prob. 9MCQCh. 28 - Prob. 10MCQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46PCh. 28 - Prob. 47PCh. 28 - Prob. 48PCh. 28 - Prob. 49PCh. 28 - Prob. 50PCh. 28 - Prob. 51PCh. 28 - Prob. 52PCh. 28 - Prob. 53PCh. 28 - Prob. 54PCh. 28 - Prob. 55PCh. 28 - Prob. 56PCh. 28 - Prob. 57PCh. 28 - Prob. 58PCh. 28 - Prob. 59PCh. 28 - Prob. 60PCh. 28 - Prob. 61PCh. 28 - Prob. 62PCh. 28 - Prob. 63PCh. 28 - Prob. 64PCh. 28 - Prob. 65PCh. 28 - Prob. 66PCh. 28 - Prob. 67PCh. 28 - Prob. 68PCh. 28 - Prob. 69PCh. 28 - Prob. 70PCh. 28 - Prob. 71PCh. 28 - Prob. 72PCh. 28 - Prob. 73PCh. 28 - Prob. 74PCh. 28 - Prob. 75PCh. 28 - Prob. 76PCh. 28 - Prob. 77PCh. 28 - Prob. 78PCh. 28 - Prob. 79PCh. 28 - Prob. 80PCh. 28 - Prob. 81PCh. 28 - Prob. 82PCh. 28 - Prob. 83PCh. 28 - Prob. 84PCh. 28 - Prob. 85PCh. 28 - Prob. 86PCh. 28 - Prob. 87PCh. 28 - Prob. 88P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON