Concept explainers
(a)
The length of the one-dimensional box.
(a)
Answer to Problem 72P
The length of the box is
Explanation of Solution
The ground state energy of the electron in a box is
Write the expression for energy of the quantized level.
Here,
Write the expression for ground state energy for a particle in box.
Here,
Rearranging (I)
Substituting
Thus, the length of the box is
(b)
The plot of wave functions of the first three state.
(b)
Explanation of Solution
Write the expression for the wave function of a particle in a box.
Here,
Substitute
Here,
Here,
Here,
The plot of the wave functions versus position is given below:
(c)
The wavelength of the electron in the third state.
(c)
Answer to Problem 72P
The wave length of the electron in the second excited state is
Explanation of Solution
Substituting
Here,
Write the expression for de Broglie wavelength of an electron.
Here,
The particle in a box model renders only the kinetic energy since the potential is zero at the box and is infinite everywhere else. Thus, consider,
Substituting
Rearranging
Substituting
Thus, the wave length of the electron in the second excited state is
(d)
The wavelength of the emitted photon during the downward transition of the electron.
(d)
Answer to Problem 72P
The possible wavelengths of the emitted photons are
Explanation of Solution
The wavelength of the photon is
Write the expression for energy of a photon.
Here,
Write the expression for energy of the quantized levels in terms of the ground state energy
Subtracting
Here,
Rearranging (XII)
Substituting
Substitute
Thus when the electron absorbs the photon, it is excited to the third state.
The possible downward transitions are
Write the expression for energy of the photon during a downward transition.
Here,
Substituting
Substituting
Substituting
For,
Substituting
Substituting
For,
For,
Thus, the possible wavelengths of the emitted photons are
Want to see more full solutions like this?
Chapter 28 Solutions
Physics
- Which of the following best describes how to calculate the average acceleration of any object? Average acceleration is always halfway between the initial acceleration of an object and its final acceleration. Average acceleration is always equal to the change in velocity of an object divided by the time interval. Average acceleration is always equal to the displacement of an object divided by the time interval. Average acceleration is always equal to the change in speed of an object divided by the time interval.arrow_forwardThe figure shows the velocity versus time graph for a car driving on a straight road. Which of the following best describes the acceleration of the car? v (m/s) t(s) The acceleration of the car is negative and decreasing. The acceleration of the car is constant. The acceleration of the car is positive and increasing. The acceleration of the car is positive and decreasing. The acceleration of the car is negative and increasing.arrow_forwardWhich figure could represent the velocity versus time graph of a motorcycle whose speed is increasing? v (m/s) v (m/s) t(s) t(s)arrow_forward
- Unlike speed, velocity is a the statement? Poisition. Direction. Vector. Scalar. quantity. Which one of the following completesarrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward3.63 • Leaping the River II. A physics professor did daredevil stunts in his spare time. His last stunt was an attempt to jump across a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at 53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower than the top of the ramp. The river itself was 100 m below the ramp. Ignore air resistance. (a) What should his speed have been at the top of the ramp to have just made it to the edge of the far bank? (b) If his speed was only half the value found in part (a), where did he land? Figure P3.63 53.0° 100 m 40.0 m→ 15.0 marrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON