EP PHYSICS -MOD.MASTERING (18W)
5th Edition
ISBN: 9780136782490
Author: Walker
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 28, Problem 6PCE
Two students in a dorm room listen to a pure tone produced by two loudspeakers that are in phase Students A and B in Figure 28-42 hear a maximum sound. What is the lowest possible frequency of the loudspeakers?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two out of phase loudspeakers are X distance apart. A person is 6 meters from one and 4 from another. What is the third-lowest frequency the person will hear constructive interference?
6. Moe, Larry, and Curly stand in a line with a
spacing of 1.00 m. Larry is 3.00 m in front of a
pair of stereo speakers 0.800 m apart, as
shown in Figure 28-43 . The speakers produce
a single-frequency tone, vibrating in phase
with each other. What are the two lowest
frequencies that allow Larry to hear a loud
tone while Moe and Curly hear very little?
0.800 m
1
3.00 m
Curly
Larry
Moe
1.00 m
1.00 m
The figure shows a loud speaker A and point C where a listener is. AC= 1m and the angle is 40 degrees. B is somewhere to the left of A. Both speakers are playing out of phase a 65Hz tone. What is the second closest distance to speaker A that speaker B can be located so that the listener hears no sound?
Chapter 28 Solutions
EP PHYSICS -MOD.MASTERING (18W)
Ch. 28.1 - Two beams of light that have the same phase are...Ch. 28.2 - If the wavelength in a two-slit experiment is...Ch. 28.3 - For each of the cases shown in Figure 28-22, state...Ch. 28.4 - If the wavelength of light passing through a...Ch. 28.5 - If you view the world with blue light, is your...Ch. 28.6 - Suppose a diffraction grating has slits separated...Ch. 28 - Prob. 1CQCh. 28 - What happens to the two-slit interference pattern...Ch. 28 - If a radio station broadcasts its signal through...Ch. 28 - How would you expect the interference pattern of a...
Ch. 28 - Describe the changes that would be observed in the...Ch. 28 - Two identical sheets of glass are coated with...Ch. 28 - A cats eye has a pupil that is elongated in the...Ch. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Two sources emit waves that are coherent, in...Ch. 28 - In an experiment to demonstrate interference, you...Ch. 28 - A theme park creates a new kind of water wave pool...Ch. 28 - Two sources emit waves that are in phase with each...Ch. 28 - A person driving at 17 m/s crosses the line...Ch. 28 - Two students in a dorm room listen to a pure tone...Ch. 28 - If the loudspeakers in Problem 6 are 180 out of...Ch. 28 - A microphone is located on the line connecting two...Ch. 28 - A microphone is located on the line connecting two...Ch. 28 - Predict/Calculate Radio waves of frequency 1.427...Ch. 28 - Moe, Larry, and Curly stand in a line with a...Ch. 28 - Predict/Calculate In Figure 28-43 the two speakers...Ch. 28 - Consider a two-slit interference pattern, with...Ch. 28 - (a) Does the path-length difference l increase or...Ch. 28 - Predict/Explain A two-slit experiment with red...Ch. 28 - Laser light with a wavelength = 690 nm...Ch. 28 - Monochromatic light passes through two slits...Ch. 28 - In Youngs two-slit experiment, the first dark...Ch. 28 - Predic/Calculate A two-slit experiment with slits...Ch. 28 - A two-slit pattern is viewed on a screen 1.00 m...Ch. 28 - Light from a He-Ne laser ( = 632.8 nm) strikes a...Ch. 28 - For a science fair demonstration you would like to...Ch. 28 - Light with a wavelength of 576 nm passes through...Ch. 28 - Predict/Calculate Suppose the inference pattern...Ch. 28 - A physics instructor wants to produce a...Ch. 28 - Predict/Calculate When green light ( = 505 nm)...Ch. 28 - Predict/Calculate The interference pattern shown...Ch. 28 - Figure 28-46 shows four different cases where...Ch. 28 - The oil film floating on water in the accompanying...Ch. 28 - A soap bubble with walls 418 nm thick floats in...Ch. 28 - A soap film (n = 1.33) is 825 nm thick. White...Ch. 28 - White light is incident on a soap film (n = 1.30)...Ch. 28 - A 742-nm-thick soap film (nfilm = 1.33) rests on a...Ch. 28 - An oil film (n = 1.46) floats on a water puddle....Ch. 28 - A radio broadcast antenna is 36.00 km from your...Ch. 28 - Predict/Calculate Newton s Rings Monochromatic...Ch. 28 - Light is incident from above on two plates of...Ch. 28 - Submarine Saver A naval engineer is testing an...Ch. 28 - Predict/Calculate A thin layer of magnesium...Ch. 28 - A single-slit diffraction pattern is formed on a...Ch. 28 - White light is incident normally on a thin soap...Ch. 28 - Two glass plates are separated by fine wires with...Ch. 28 - A single-slit diffraction pattern is formed on a...Ch. 28 - What width single slit will produce first-order...Ch. 28 - Diffraction also occurs with sound waves Consider...Ch. 28 - Green light ( = 546 nm) strikes a single slit at...Ch. 28 - Light with a wavelength of 696 nm passes through a...Ch. 28 - Predict/Calculate A single slit is illuminated...Ch. 28 - How many dark fringes will be produced on either...Ch. 28 - Predict/Calculate The diffraction pattern shown in...Ch. 28 - A screen is placed 1.50 m behind a single slit....Ch. 28 - Predict/Explain (a) In principle, do your eyes...Ch. 28 - Two point sources of light are separated by 5.5...Ch. 28 - A spy camera is said to be able to read the...Ch. 28 - Splitting Binary Stars As seen from Earth, the red...Ch. 28 - Very Large Telescope Interferometer A series of...Ch. 28 - Find the minimum aperture diameter of a camera...Ch. 28 - The Resolution of Hubble The Hubble Space...Ch. 28 - A lens that is optically perfect is still limited...Ch. 28 - Early cameras were little more than a box with a...Ch. 28 - A grating has 797 lines per centimeter Find the...Ch. 28 - Prob. 62PCECh. 28 - A diffraction groting has 2500 lines/cm What is...Ch. 28 - The yellow light from a helium discharge tube has...Ch. 28 - A diffraction grating with 365 lines/mm is 1 25 m...Ch. 28 - Protein Structure X-rays with a wavelenglh of 0...Ch. 28 - White light strikes a grating with 7600...Ch. 28 - White light strikes a diffraction grating...Ch. 28 - CD Reflection The rows of bumps on a CD form lines...Ch. 28 - A light source emits two district wavelengths [1 =...Ch. 28 - A laser emits two wavelengths ( = 420 nm; 2 = 630...Ch. 28 - Predict/Calculate When blue light with a...Ch. 28 - Monochromatic light strikes a diffracton grating...Ch. 28 - A diffraction grating with a slit separation d is...Ch. 28 - CE Predict/Explain (a) If a thin liquid film...Ch. 28 - CE If the index of refraction of an eye could be...Ch. 28 - When reading the printout from a laser printer,...Ch. 28 - The headlights of a pickup truck are 1 36 m apart...Ch. 28 - Antireflection Coating A glass lens (nglass = 1...Ch. 28 - A thin film of oil (n = 1.30) floats on water (n =...Ch. 28 - The yellow light of sodium, with wavelengths of...Ch. 28 - Predict/Calculate A thin soap film (n = 1.33)...Ch. 28 - Predict/Calculate A thin film of oil (n = 1.40)...Ch. 28 - PredictfCalculate Sodium light, with a wavelength...Ch. 28 - BIO The Largest Eye The colossal squid...Ch. 28 - Product/Calculate Figure 28-49 shows a single-slit...Ch. 28 - BIO Entoptic Halos Images produced by structures...Ch. 28 - White light is incident on a soap film (n = 1.33,...Ch. 28 - Predict/Calculate A system like that shown in...Ch. 28 - A curved piece of glass with a radius of curvature...Ch. 28 - BIO The Resolution of the Eye The resolution of...Ch. 28 - Resolving Lines on an HDTV The American Television...Ch. 28 - Resolving Lines on an HDTV The American Television...Ch. 28 - Resolving Lines on an HDTV The American Television...Ch. 28 - Resolving Lines on an HDTV The American Television...Ch. 28 - Predict/Calculate Referring to Example 28-3...Ch. 28 - Predict/Calculate Referring to Example 28-3 The...Ch. 28 - Predict/Calculate Referring to Example 28-11 The...Ch. 28 - Predictf/Calculate Referring to Example 28-11 The...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Which culture uses NAD+? Use the following choices to answer questions. a. E. coli growing in glucose broth at ...
Microbiology: An Introduction
89. Determine the volume of 0.150 M NaOH solution required to neutralize each sample of hydrochloric acid. The ...
Introductory Chemistry (6th Edition)
Where is transitional epithelium found and what is its importance at those sites?
Anatomy & Physiology (6th Edition)
Give at least three examples of key ecosystem services that nature provides for people.
Campbell Biology (11th Edition)
8. A human maintaining a vegan diet (containing no animal products) would be a:
a. producer
b. primary consume...
Human Biology: Concepts and Current Issues (8th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the necessary condition on the path length difference between two waves that interfere (a) constructively and (b) destructively?arrow_forwardFigure P24.69 shows a radio-wave transmitter and a receiver, both h = 50.0 m above the ground and d = 6.00 102 m apart. The receiver can receive signals directly from the transmitter and indirectly from signals that bounce off the ground. If the ground is level between the transmitter and receiver and a /2 phase shift occurs upon reflection, determine the longest wavelengths that interior (a) constructively and (b) destructively. Figure P24.69arrow_forwardTwo slits are separated by 0.180 mm. An interference pattern is formed on a screen 80.0 cm away by 656.3-nm light. Calculate the fraction of the maximum intensity a distance y = 0.600 cm away from the central maximum.arrow_forward
- The speed of light in air is approximately v=3.00108 m/s and the speed of light in glass is v=2.00108 m/s . A red laser with a wavelength of =633.00 nm shines light incident of the glass, and some of the red light is transmitted to the glass. The frequency of the light is the same for the air and the glass. (a) What is the frequency of the light? (b) What is the wavelength of the light in the glass?arrow_forwardFigure 24.26 shows the interference pattern of two radio antennas broadcasting the same signal. Explain how this is analogous to the interference pattern for sound produced by two speakers. Could this he used to make a directional antenna system that broadcasts preferentially in certain directions? Explain. Figure 24.26 An overhead view of two radio broadcast antennas sending the same signal, and the interference pattern they produce.arrow_forwardFigure P36.35 shows a radio-wave transmitter and a receiver separated by a distance d = 50.0 m and both a distance h = 35.0 m above the ground. The receiver can receive signals both directly from the transmitter and indirectly from signals that reflect from the ground. Assume the ground is level between the transmitter and receiver and a 180 phase shift occurs upon reflection. Determine the longest wavelengths that interfere (a) constructively and (b) destructively. Figure P36.35 Problems 35 and 36.arrow_forward
- Iftwo beams from two identical sources overlap, the fringing will result on the screen. If you know that the phase difference Between the two beams it will generate an intensity of k when the path difference is equal to A. Whatis the magnitude of the intensity at a point on the screen Then the path difference is equal to 2/A.arrow_forwardA crocodile in a like is situated 12 m below a duck and 17 m to the left of a turtle. The duck and turtle are dancing in the water, emitting two coherent waves of wavelength 0.5 m in the water surface. What is the phase difference of the two waves when they both reach the crocodile? -12 m 17 m Choices 12.6 rads 62.8 rads -62.8 rads -12.6 radsarrow_forwardChapter 35, Problem 011 Suppose that the two waves in the figure have wavelength 635 nm in air. What multiple of A gives their phase difference when they emerge if (a) ni = 1.67 and n2 = 1.77, and L = 8.81 µm; (b) n1 = 1.79 and n2 = 1.89, and L = 8.81 µm; and (c) n1 = 1.76 and n2 1.96, and L = 3.74 µm %3D ng (a) Number Units (b) Number Units (c) Number Unitsarrow_forward
- In two source interference, the maximum intensity occurs when a. the wavelength is half of the path difference b. the path difference is thrice of the wavelength c. both a and b d. neither a nor b e. cannot be determinedarrow_forwardThe figure below shows a radio wave transmitter and a receiver separated by a distance d = 50distance d = 50, 0 m, both being at a height h = 35, 0 m above the ground. The receiver canThe receiver can receive signals either directly or indirectly from reflected signals on the ground. Suppose that theground is leveled and a 180o phase shift occurs in the reflection.Determine the longest wavelengths that interferea. constructively;b. destructively.arrow_forwardTwo identical point sources are 4.5 cm apart, in phase and vibrating at a frequencyof 10 Hz. They produce an interference pattern. At the point of the first nodal line 4.5 cmfrom one source and 5.0 cm from the other.a) Determine the wavelength. b) Determine the speed of the waves.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY