Concept explainers
A person driving at 17 m/s crosses the line connecting two radio transmitters at right angles, as shown in Figure 28-41 The transmitters emit identical signals in phase with each other, which the driver receives on the car radio. When the car is at point A. the radio picks up a maximum net signal. (a) What is the longest possible wavelength of the radio waves? (b) At what time after the car passes point A does the radio experience a minimum in the net signal? Assume that the wavelength has the value found in part (a).
Want to see the full answer?
Check out a sample textbook solutionChapter 28 Solutions
EP PHYSICS -MOD.MASTERING (18W)
Additional Science Textbook Solutions
Concepts of Genetics (12th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Biology: Life on Earth with Physiology (11th Edition)
Cosmic Perspective Fundamentals
Anatomy & Physiology (6th Edition)
Campbell Biology in Focus (2nd Edition)
- Radio station WWVB, operated by the National Institute of Standards and Technology (NIST) from Fort Collins, Colorado, at a low frequency of 60 kHz, broadcasts a time synchronization signal whose range covers the entire continental US. The timing of the synchronization signal is controlled by a set of atomic clocks to an accuracy of 101012 s, and repeats every 1 minute. The signal is used for devices, such as radio-controlled watches, that automatically synchronize with it at preset local times. WWVB's long wavelength signal tends to propagate close to the ground. (a) Calculate the wavelength of the radio waves from WWVB. (b) Estimate the error that the travel time of the signal causes in synchronizing a radio controlled watch in Norfolk, Virginia, which is 1570 mi (2527 km) from Fort Collins, Colorado.arrow_forwardTwo radio antennas separated by d = 3.00 102 cm. as shown in Figure P24.7, simultaneously broadcast identical signals at the same the signals. (a) If the car is at the position of the second maximum wavelength. A car travels due north along a straight line at position x = 1.00 103 m from the center point between the antennas and its radio receives the signal. (a) If the car is at the position of the second maximum after that at point O when it has traveled a distance of y = 4.00 102 m northward, what is the wavelength of the signals? (b) How much farther must the car travel from thus position to encounter the next minimum in reception? Hint: Do not use the small-angle approximation in this problem.arrow_forwardTV-reception antennas for VHF are constructed with cross wires supported at their centers, as shown in Figure 24.27. The ideal length for the cross wires is one-half the wavelength to he received, with the more expensive antennas having one for each channel. Suppose you measure the lengths of the wires for particular channels and find them to be 1.94 and 0.753 m long, respectively. What are the frequencies for these channels? Figure 24.27 A television reception antenna has cross wires of various lengths to most efficiently receive different wavelengths.arrow_forward
- A Marconi antenna, used by most AM radio stations, consists of the top half of a Hertz antenna (also known as a half-wave antenna because its length is /2). The lower end of this Marconi (quarter-wave) antenna is connected to Earth ground, and the ground itself serves as the missing lower hall. What are the heights of the Marconi antennas for radio stations broadcasting at (a) 560 kHz and (b) 1 600 kHz?arrow_forwardA Doppler weather radar station broadcasts a pulse of radio waves at frequency 2.85 GHz. From a relatively small batch of raindrops at bearing 38.6 east of north, the station receives a reflected pulse after 180 s with a frequency shifted upward by 254 Hz. From a similar batch of raindrops at bearing 39.6 east of north, the station receives a reflected pulse after the same time delay, with a frequency shifted downward by 254 Hz. These pulses have the highest and lowest frequencies the station receives, (a) Calculate the radial velocity components of both batches of raindrops. (b) Assume that these raindrops are swirling in a uniformly rotating vortex. Find the angular speed of their rotation.arrow_forwardUnpolarized light passes through three polarizing filters. The first filter has its transmission axis parallel to the z direction, the second has its transmission axis at an angle of 30.0 from the z direction, and the third has its transmission axis at an angle of 60.0 from the z direction. If the light that emerges from the third filter has an intensity of 250.0 W/m2, what is the original intensity of the light?arrow_forward
- Figure 24.26 shows the interference pattern of two radio antennas broadcasting the same signal. Explain how this is analogous to the interference pattern for sound produced by two speakers. Could this he used to make a directional antenna system that broadcasts preferentially in certain directions? Explain. Figure 24.26 An overhead view of two radio broadcast antennas sending the same signal, and the interference pattern they produce.arrow_forwardHow many helium atoms, each with a radius of about 31 pm, must be placed end to end to have a length equal to one wavelength of 470 nm blue light?arrow_forwardAn AM radio station broadcasts isotropically (equally in all directions) with an average power of 3.60 kW. A receiving antenna 60.0 cm long is at a location 4.00 mi from the transmitter. Compute the amplitude of the emf that is induced by this signal between the ends of the receiving antenna. Need Help? Read It Watch Itarrow_forward
- Q7- If an angle modulated signal s(t)=10{cos(2π10^8t)+15sin(2π10^3t)}find its maximum frequency deviation.arrow_forwardFor problem 34 calculate the transmitted intensity in watts per square meter if the second polarizer has an angle of 155 degrees (5 sig figs)arrow_forwardA circular radar antenna on a Coast Guard ship has a diameter of 2.10 m and radiates at a frequency of 14.0 GHz. Two small boats are located 8.00 km away from the ship. How close together could the boats be and still be detected as two objects? Need Help? Watch It Read Itarrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning