College Physics:
11th Edition
ISBN: 9781305965515
Author: SERWAY, Raymond A.
Publisher: Brooks/Cole Pub Co
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 48AP
(a)
To determine
The physical length of the pulse as it travels through space.
(b)
To determine
The number of photon.
(c)
To determine
The number of photon per cubic millimeter.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A laser emits 6.85 x 1018 photons per second in a thin beam with circular cross section having diameter 1.2 mm. The wavelength of the photons is 514.5 nm.
What is the laser output power? (enter your answer with 3 significant figures)
energy flux of sunlight reaching the surface of
the earth is 1.388 x 10^3 W/m^2. How many
photons (nearly) per square meter are incident
on the Earth per second? Assume that the
photons in the sunlight have an average
wavelength of 550 nm.
The average threshold of dark-adapted (scotopic) vision is 4.00 x 10-11 W/m? at
a central wavelength of 500 nm. If light having this intensity and wavelength
enters the eye and the pupil is open to its maximum diameter of 8.50 mm, how
many photons per second enter the eye?
Chapter 28 Solutions
College Physics:
Ch. 28.3 - Prob. 28.1QQCh. 28.4 - Prob. 28.2QQCh. 28.5 - Prob. 28.3QQCh. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQ
Ch. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQCh. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46APCh. 28 - Prob. 47APCh. 28 - Prob. 48APCh. 28 - Prob. 49APCh. 28 - Prob. 50APCh. 28 - Prob. 51APCh. 28 - Prob. 52APCh. 28 - Prob. 53APCh. 28 - Prob. 54AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the wavelength of (a) a 12-keV X-ray photon; (b) a 2.O-MeV y -ray photon?arrow_forwardA 900-W microwave generator in an oven generates energy quanta of frequency 2560 MHz. (a) How many energy quanta does it emit per second? (b) How many energy quanta must be absorbed by a pasta dish placed in the radiation cavity to increase its temperature by 45.0 K? Assume that the dish has a mass of 0.5 kg and that its specific heat is 0.9 kcal/kg • K. (c) Assume that all energy quanta emitted by the generator are absorbed by the pasta dish. How long must we wait until the dish in (b) is ready?arrow_forwardWhat is the momentum of a 589-nm yellow photon?arrow_forward
- The energy flux of sunlight reaching the surface of the earth is 1.388 x 10³ w/m?. How many photons (nearly) per square metre are incident on the Earth per second? Assume that the photons in the sunlight have an average wavelength of 550 nm.arrow_forwardA helium–neon laser produces a beam of diameter 1.75 mm, delivering 2.00 × 1018 photons/s. Each photon has a wavelength of 633 nm. Calculate the amplitudes of (a) the electric fields and (b) the magnetic fields inside the beam. (c) If the beam shines perpendicularly onto a perfectly reflecting surface, what force does it exert on the surface? (d) If the beam is absorbed by a block of ice at 0°C for 1.50 h, what mass of ice is melted?arrow_forwardA 117.0W lightbulb emits about 7.45W of visible light. (The other 109.55W are emitted as infrared radiation or lost as heat to the surroundings.) The average wavelength of the visible light is about 570.0nm, so make the simplifying assumption that all the visible light has this wavelength. What is the frequency of the emitted visible light? How many visible-light photons does the bulb emit per second?arrow_forward
- Fresh out of university you've been hired to do some photoelectron spectroscopy. You have a lamp that outputs an unknown wavelength of light. When the light is incident on a metal with a work function of 6.31 eV, you observe a stopping voltage equal to 4.21 V. What is the wavelength of the light? (unit in nm).arrow_forwardA pulsed ruby laser emits light at 694.3 nm. For a 14.7-ps pulse containing 3.40 J of energy, find the following. (a) the physical length of the pulse as it travels through space _________________mm(b) the number of photons in it__________________ photons(c) If the beam has a circular cross section 0.600 cm in diameter, find the number of photons per cubic millimeter. _______________photons/mm3arrow_forwardA helium-neon laser produces a beam of diameter 1.75 mm, delivering 1.05 x 1018 photons/s. Each photon has a wavelength of 633 nm. (a) Calculate the amplitude of the electric field inside the beam. 14 How much total energy is delivered by the beam in one second? kV/m (b) Calculate the amplitude of the magnetic field inside the beam. PT (c) If the beam shines perpendicularly onto a perfectly reflecting surface, what force does it exert on the surface? nN (d) If the beam is absorbed by a block of ice at 0°C for 1.20 h, what mass of ice is melted?arrow_forward
- A 633 nm helium-neon laser puts out 4.00 W of power with a beam 5.70 mm in diameter. The beam is pointed directly at a pinhole which has a diameter of 1.80 mm. How many photons of light will travel through the pinhole per second? Assume that the intensity of the light is equally distributed across the whole area of the beam. number of photons per second: photons/sarrow_forwardA laser emits 5.67 × 101⁹ photons per second in a beam of light that has a diameter of 2.88 mm and a wavelength of 514.5 nm. Determine (a) the average electric field strength and (b) the average magnetic field strength for the electromagnetic wave that constitutes the beam. (a) Number i (b) Number i Units Unitsarrow_forwardA typical red laser pointer has a power output of 1.50 mW and a wavelength of 680 nm. Find how many photons per second the laser emits in units of 10¹5 photons/sec. (A) 2.31 (B) 5.13 (C) 4.97 (D) 7.49 (E) 3.78arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning