Differential Equations
Differential Equations
4th Edition
ISBN: 9780495561989
Author: Paul Blanchard, Robert L. Devaney, Glen R. Hall
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 2.8, Problem 3E

(a)

To determine

To prove that (x(t),y(t), z(t)) is a solution with x(0)=y(0)=0, then x(t)=y(t)=0 for all t.

(b)

To determine

To find the solution with initial condition (0,0,1).

(c)

To determine

To find the solution with initial condition (0,0, z0 ) and sketch its solution curve in xyz-phase space.

Blurred answer
Students have asked these similar questions
4. Assume that a risk-free money market account is added to the market described in Q3. The continuously compounded rate of return on the money market account is log (1.1). (i) For each given μ, use Lagrange multipliers to determine the proportions (as a function of μ) of wealth invested in the three assets available for the minimum variance portfolio with expected return μ. (ii) Determine the market portfolio in this market and calculate its Sharp ratio.
3. A market consists of two risky assets with rates of return R₁ and R2 and no risk-free asset. From market data the following have been estimated: ER₁ = 0.25, ER2 = 0.05, Var R₁ = 0.01, Var R2 = 0.04 and the correlation between R1 and R2 is p = -0.75. (i) Given that an investor is targeting a total expected return of μ = 0.2. What portfolio weights should they choose to meet this goal with minimum portfolio variance? Correct all your calculations up to 4 decimal points. (ii) Determine the global minimum-variance portfolio and the expected return and variance of return of this portfolio (4 d.p.). (iii) Sketch the minimum-variance frontier in the μ-σ² plane and indicate the efficient frontier. (iv) Without further calculation, explain how the minimum variance of the investor's portfolio return will change if the two risky assets were independent.
2. A landlord is about to write a rental contract for a tenant which lasts T months. The landlord first decides the length T > 0 (need not be an integer) of the contract, the tenant then signs it and pays an initial handling fee of £100 before moving in. The landlord collects the total amount of rent erT at the end of the contract at a continuously compounded rate r> 0, but the contract stipulates that the tenant may leave before T, in which case the landlord only collects the total rent up until the tenant's departure time 7. Assume that 7 is exponentially distributed with rate > 0, λ‡r. (i) Calculate the expected total payment EW the landlord will receive in terms of T. (ii) Assume that the landlord has logarithmic utility U(w) = log(w - 100) and decides that the rental rate r should depend on the contract length T by r(T) = λ √T 1 For each given λ, what T (as a function of X) should the landlord choose so as to maximise their expected utility? Justify your answer. Hint. It might be…

Chapter 2 Solutions

Differential Equations

Ch. 2.1 - Exercises 9-14 refer to the predator-prey and the...Ch. 2.1 - Prob. 12ECh. 2.1 - Prob. 13ECh. 2.1 - Exercises 9-14 refer to the predator-prey and the...Ch. 2.1 - Prob. 15ECh. 2.1 - Consider the system of predator-prey equations...Ch. 2.1 - Pesticides that kill all insect species are not...Ch. 2.1 - Some predator species seldom capture healthy adult...Ch. 2.1 - Prob. 19ECh. 2.1 - Consider the initial-value problem d2ydt2+kmy=0...Ch. 2.1 - A mass weighing 12 pounds stretches a spring 3...Ch. 2.1 - A mass weighing 4 pounds stretches a spring 4...Ch. 2.1 - Do the springs in an “extra firm’ mattress have a...Ch. 2.1 - Consider a vertical mass-spring system as shown in...Ch. 2.1 - Exercises 25—30 refer to a situation in which...Ch. 2.1 - Prob. 26ECh. 2.1 - Prob. 27ECh. 2.1 - Prob. 28ECh. 2.1 - Prob. 29ECh. 2.1 - Exercises 25—30 refer to a situation in which...Ch. 2.2 - Prob. 1ECh. 2.2 - Prob. 2ECh. 2.2 - Prob. 3ECh. 2.2 - Prob. 4ECh. 2.2 - Prob. 5ECh. 2.2 - Prob. 6ECh. 2.2 - Prob. 7ECh. 2.2 - Convert the second-order differential equation 1...Ch. 2.2 - Prob. 9ECh. 2.2 - Consider the system dxdt=2x+ydydt=2y and its...Ch. 2.2 - Eight systems of differential equations and four...Ch. 2.2 - Consider the modified predator-prey system...Ch. 2.2 - In Exercises 13—18. (a) find the equilibrium...Ch. 2.2 - Prob. 14ECh. 2.2 - Prob. 15ECh. 2.2 - In Exercises 13—18. (a) find the equilibrium...Ch. 2.2 - Prob. 17ECh. 2.2 - In Exercises 13—18. (a) find the equilibrium...Ch. 2.2 - Prob. 19ECh. 2.2 - Prob. 20ECh. 2.2 - Consider the four solution curves in the phase...Ch. 2.2 - Prob. 22ECh. 2.2 - Prob. 23ECh. 2.2 - Prob. 24ECh. 2.2 - Prob. 25ECh. 2.2 - Prob. 26ECh. 2.2 - Prob. 27ECh. 2.3 - In Exercises 1—4, a harmonic oscillator equation...Ch. 2.3 - In Exercises 1—4, a harmonic oscillator equation...Ch. 2.3 - In Exercises 1—4, a harmonic oscillator equation...Ch. 2.3 - In Exercises 1—4, a harmonic oscillator equation...Ch. 2.3 - Prob. 5ECh. 2.3 - In the damped harmonic oscillator, we assume that...Ch. 2.3 - Consider any damped harmonic oscillator equation...Ch. 2.3 - Consider any damped harmonic oscillator equation...Ch. 2.3 - In Exercises 9 and 10, we consider a mass sliding...Ch. 2.3 - In Exercises 9 and 10, we consider a mass sliding...Ch. 2.4 - In Exercises 1-4, we consider the system...Ch. 2.4 - In Exercises 1-4, we consider the system...Ch. 2.4 - In Exercises 1-4, we consider the system...Ch. 2.4 - In Exercises 1-4, we consider the system...Ch. 2.4 - In Exercises 5-12, we consider the partially...Ch. 2.4 - Prob. 6ECh. 2.4 - In Exercises 5-12, we consider the partially...Ch. 2.4 - Prob. 8ECh. 2.4 - In Exercises 5-12, we consider the partially...Ch. 2.4 - In Exercises 5-12, we consider the partially...Ch. 2.4 - Prob. 11ECh. 2.4 - Prob. 12ECh. 2.4 - Consider the partially decoupled system...Ch. 2.5 - Prob. 1ECh. 2.5 - Prob. 2ECh. 2.5 - Prob. 3ECh. 2.5 - In Exercises 3—6, a system, an initial condition,...Ch. 2.5 - Prob. 5ECh. 2.5 - Prob. 6ECh. 2.5 - Using a computer or calculator, apply Euler’s...Ch. 2.5 - Prob. 8ECh. 2.6 - Consider the system dxdt=x+ydydt=y (a) Show that...Ch. 2.6 - Prob. 2ECh. 2.6 - Prob. 3ECh. 2.6 - Prob. 4ECh. 2.6 - Prob. 5ECh. 2.6 - Prob. 6ECh. 2.6 - Prob. 7ECh. 2.6 - (a) Suppose Y1(t) is a solution of an autonomous...Ch. 2.6 - Prob. 9ECh. 2.6 - Consider the system dxdt=2dydt=y2 (a) Calculate...Ch. 2.6 - Consider the system dxdt=2dydt=y2 Show that, for...Ch. 2.7 - Prob. 1ECh. 2.7 - In the SIR model, we assume that everyone in the...Ch. 2.7 - Vaccines make it possible to prevent epidemics....Ch. 2.7 - Prob. 4ECh. 2.7 - Prob. 5ECh. 2.7 - One of the basic assumptions of the SIR model is...Ch. 2.7 - Prob. 7ECh. 2.7 - Prob. 8ECh. 2.7 - Prob. 9ECh. 2.7 - Using =1.66 and the value of that you determined...Ch. 2.8 - Prob. 1ECh. 2.8 - Prob. 2ECh. 2.8 - Prob. 3ECh. 2.8 - Prob. 4ECh. 2.8 - Prob. 5ECh. 2 - Prob. 1RECh. 2 - Short answer exercises: Exercises 1-14 focus on...Ch. 2 - Short answer exercises: Exercises 1-14 focus on...Ch. 2 - Short answer exercises: Exercises 1-14 focus on...Ch. 2 - Short answer exercises: Exercises 1-14 focus on...Ch. 2 - Short answer exercises: Exercises 1-14 focus on...Ch. 2 - Prob. 7RECh. 2 - Prob. 8RECh. 2 - Prob. 9RECh. 2 - Prob. 10RECh. 2 - Prob. 11RECh. 2 - Prob. 12RECh. 2 - Short answer exercises: Exercises 1-14 focus on...Ch. 2 - Prob. 14RECh. 2 - Prob. 15RECh. 2 - Prob. 16RECh. 2 - Prob. 17RECh. 2 - Prob. 18RECh. 2 - Prob. 19RECh. 2 - Prob. 20RECh. 2 - Prob. 21RECh. 2 - Prob. 22RECh. 2 - Prob. 23RECh. 2 - Prob. 24RECh. 2 - Prob. 25RECh. 2 - Prob. 26RECh. 2 - Prob. 27RECh. 2 - Prob. 28RECh. 2 - Prob. 29RECh. 2 - Prob. 30RECh. 2 - In Exercises 31-34, a solution curve in the...Ch. 2 - Prob. 32RECh. 2 - Prob. 33RECh. 2 - Prob. 34RECh. 2 - Consider the partially decoupled system...Ch. 2 - Consider the partially decoupled system...Ch. 2 - Prob. 37RE
Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Intro to the Laplace Transform & Three Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=KqokoYr_h1A;License: Standard YouTube License, CC-BY