Concept explainers
Convert the second-order differential equation
1
into a first-order system in terms of y and v where v = dy/dt.
(a) Determine the vector field associated with the first-order system.
(b) Sketch enough
(c) Use HPGSystemSolver to sketch the associated direction field.
(d) Make a rough sketch of the phase portrait of the system and confirm your answer using HPGSystemsolver.
(e) Briefly describe the behavior of the solutions.
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Differential Equations
- At time t=0, a particle is located at the point (3,9,4). It travels in a straight line to the point (7,8,6), has speed 6 at (3,9,4) and constant acceleration 4i-j+2k. Find an equation for the position vector r(t) of the particle at time t -O+¹+* The equation for the position vector r(t) of the particle at time t is r(t) = (Type exact answers, using radicals as needed.)arrow_forwardQ3: A particle traveling in a straight line is located at the point (1,-1,2) and has speed 2 at time t = 0. The particle moves toward the point (3, 0,3) with constant acceleration 2i+j+ k. Find its position vector r(t) at time t.arrow_forwardWhat is the velocity vector?arrow_forward
- (14) The straight line L passes through the origin O and is in the direction i+mj. The straight line L' passes through the point A whose position vector is ai and is in the direction i+m'j. Write down the vector equations of L and L' and find the position vector of their point of intersection.arrow_forwardSubtracting the two equations, find a vector equation for the curve of intersection between y= 4x2+(3/4)z2 and y-1= 3x2+(1/2)z2 for x>0. Find and simplify the tangential component of acceleration for your curve.arrow_forwardAn airplane took off from point (3, 0, 0) at an initial velocity, v(0)= 3j with an acceleration vector of a(t) = (-3 cos t)i + (-3 sin t)j + 2k. Determine the vector function, r(t), to represent the path of the airplane as a function of t.arrow_forward
- Suppose that over a certain region of space the electrical potential V is given by the following equation. V(х, у, 2) %3 4x2 - Зху + хуz (a) Find the rate of change of the potential at P(6, 6, 5) in the direction of the vector v = i +j- k. (b) In which direction does V change most rapidly at P? (c) What is the maximum rate of change at P?arrow_forwardSolve 2arrow_forwardFind a equation vector and the equation of the tangent line at the point P0 where t=0.2 on the graph of the vector function r(t)=e2ti+(t2-t)j+(ln(t))karrow_forward
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education