Physics (5th Edition)
5th Edition
ISBN: 9780321976444
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 28, Problem 30PCE
A soap bubble with walls 418 nm thick floats in air. If this bubble is illuminated perpendicularly with sunlight, what wavelength (and color) will be absent in the reflected light? Assume that the index of refraction of the soap film is 1.33. (Refer to Example 25-6 for the connection between wavelength and color.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
No chatgpt pls
Consider the situation in the figure below; a neutral conducting ball hangs from the ceiling by an insulating string, and a charged insulating rod is going to be placed nearby.
A. First, if the rod was not there, what statement best describes the charge distribution of the ball?
1) Since it is a conductor, all the charges are on the outside of the ball. 2) The ball is neutral, so it has no positive or negative charges anywhere. 3) The positive and negative charges are separated from each other, but we don't know what direction the ball is polarized. 4) The positive and negative charges are evenly distributed everywhere in the ball.
B. Now, when the rod is moved close to the ball, what happens to the charges on the ball?
1) There is a separation of charges in the ball; the side closer to the rod becomes positively charged, and the opposite side becomes negatively charged. 2) Negative charge is drawn from the ground (via the string), so the ball acquires a net negative charge. 3)…
answer question 5-9
Chapter 28 Solutions
Physics (5th Edition)
Ch. 28.1 - Two beams of light that have the same phase are...Ch. 28.2 - If the wavelength in a two-slit experiment is...Ch. 28.3 - For each of the cases shown in Figure 28-22, state...Ch. 28.4 - If the wavelength of light passing through a...Ch. 28.5 - If you view the world with blue light, is your...Ch. 28.6 - Suppose a diffraction grating has slits separated...Ch. 28 - Prob. 1CQCh. 28 - What happens to the two-slit interference pattern...Ch. 28 - If a radio station broadcasts its signal through...Ch. 28 - How would you expect the interference pattern of a...
Ch. 28 - Describe the changes that would be observed in the...Ch. 28 - Two identical sheets of glass are coated with...Ch. 28 - A cats eye has a pupil that is elongated in the...Ch. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Two sources emit waves that are coherent, in...Ch. 28 - In an experiment to demonstrate interference, you...Ch. 28 - A theme park creates a new kind of water wave pool...Ch. 28 - Two sources emit waves that are in phase with each...Ch. 28 - A person driving at 17 m/s crosses the line...Ch. 28 - Two students in a dorm room listen to a pure tone...Ch. 28 - If the loudspeakers in Problem 6 are 180 out of...Ch. 28 - A microphone is located on the line connecting two...Ch. 28 - A microphone is located on the line connecting two...Ch. 28 - Predict/Calculate Radio waves of frequency 1.427...Ch. 28 - Moe, Larry, and Curly stand in a line with a...Ch. 28 - Predict/Calculate In Figure 28-43 the two speakers...Ch. 28 - Consider a two-slit interference pattern, with...Ch. 28 - (a) Does the path-length difference l increase or...Ch. 28 - Predict/Explain A two-slit experiment with red...Ch. 28 - Laser light with a wavelength = 690 nm...Ch. 28 - Monochromatic light passes through two slits...Ch. 28 - In Youngs two-slit experiment, the first dark...Ch. 28 - Predic/Calculate A two-slit experiment with slits...Ch. 28 - A two-slit pattern is viewed on a screen 1.00 m...Ch. 28 - Light from a He-Ne laser ( = 632.8 nm) strikes a...Ch. 28 - For a science fair demonstration you would like to...Ch. 28 - Light with a wavelength of 576 nm passes through...Ch. 28 - Predict/Calculate Suppose the inference pattern...Ch. 28 - A physics instructor wants to produce a...Ch. 28 - Predict/Calculate When green light ( = 505 nm)...Ch. 28 - Predict/Calculate The interference pattern shown...Ch. 28 - Figure 28-46 shows four different cases where...Ch. 28 - The oil film floating on water in the accompanying...Ch. 28 - A soap bubble with walls 418 nm thick floats in...Ch. 28 - A soap film (n = 1.33) is 825 nm thick. White...Ch. 28 - White light is incident on a soap film (n = 1.30)...Ch. 28 - A 742-nm-thick soap film (nfilm = 1.33) rests on a...Ch. 28 - An oil film (n = 1.46) floats on a water puddle....Ch. 28 - A radio broadcast antenna is 36.00 km from your...Ch. 28 - Predict/Calculate Newton s Rings Monochromatic...Ch. 28 - Light is incident from above on two plates of...Ch. 28 - Submarine Saver A naval engineer is testing an...Ch. 28 - Predict/Calculate A thin layer of magnesium...Ch. 28 - A single-slit diffraction pattern is formed on a...Ch. 28 - White light is incident normally on a thin soap...Ch. 28 - Two glass plates are separated by fine wires with...Ch. 28 - A single-slit diffraction pattern is formed on a...Ch. 28 - What width single slit will produce first-order...Ch. 28 - Diffraction also occurs with sound waves Consider...Ch. 28 - Green light ( = 546 nm) strikes a single slit at...Ch. 28 - Light with a wavelength of 696 nm passes through a...Ch. 28 - Predict/Calculate A single slit is illuminated...Ch. 28 - How many dark fringes will be produced on either...Ch. 28 - Predict/Calculate The diffraction pattern shown in...Ch. 28 - A screen is placed 1.50 m behind a single slit....Ch. 28 - Predict/Explain (a) In principle, do your eyes...Ch. 28 - Two point sources of light are separated by 5.5...Ch. 28 - A spy camera is said to be able to read the...Ch. 28 - Splitting Binary Stars As seen from Earth, the red...Ch. 28 - Very Large Telescope Interferometer A series of...Ch. 28 - Find the minimum aperture diameter of a camera...Ch. 28 - The Resolution of Hubble The Hubble Space...Ch. 28 - A lens that is optically perfect is still limited...Ch. 28 - Early cameras were little more than a box with a...Ch. 28 - A grating has 797 lines per centimeter Find the...Ch. 28 - Prob. 62PCECh. 28 - A diffraction groting has 2500 lines/cm What is...Ch. 28 - The yellow light from a helium discharge tube has...Ch. 28 - A diffraction grating with 365 lines/mm is 1 25 m...Ch. 28 - Protein Structure X-rays with a wavelenglh of 0...Ch. 28 - White light strikes a grating with 7600...Ch. 28 - White light strikes a diffraction grating...Ch. 28 - CD Reflection The rows of bumps on a CD form lines...Ch. 28 - A light source emits two district wavelengths [1 =...Ch. 28 - A laser emits two wavelengths ( = 420 nm; 2 = 630...Ch. 28 - Predict/Calculate When blue light with a...Ch. 28 - Monochromatic light strikes a diffracton grating...Ch. 28 - A diffraction grating with a slit separation d is...Ch. 28 - CE Predict/Explain (a) If a thin liquid film...Ch. 28 - CE If the index of refraction of an eye could be...Ch. 28 - When reading the printout from a laser printer,...Ch. 28 - The headlights of a pickup truck are 1 36 m apart...Ch. 28 - Antireflection Coating A glass lens (nglass = 1...Ch. 28 - A thin film of oil (n = 1.30) floats on water (n =...Ch. 28 - The yellow light of sodium, with wavelengths of...Ch. 28 - Predict/Calculate A thin soap film (n = 1.33)...Ch. 28 - Predict/Calculate A thin film of oil (n = 1.40)...Ch. 28 - PredictfCalculate Sodium light, with a wavelength...Ch. 28 - BIO The Largest Eye The colossal squid...Ch. 28 - Product/Calculate Figure 28-49 shows a single-slit...Ch. 28 - BIO Entoptic Halos Images produced by structures...Ch. 28 - White light is incident on a soap film (n = 1.33,...Ch. 28 - Predict/Calculate A system like that shown in...Ch. 28 - A curved piece of glass with a radius of curvature...Ch. 28 - BIO The Resolution of the Eye The resolution of...Ch. 28 - Resolving Lines on an HDTV The American Television...Ch. 28 - Resolving Lines on an HDTV The American Television...Ch. 28 - Resolving Lines on an HDTV The American Television...Ch. 28 - Resolving Lines on an HDTV The American Television...Ch. 28 - Predict/Calculate Referring to Example 28-3...Ch. 28 - Predict/Calculate Referring to Example 28-3 The...Ch. 28 - Predict/Calculate Referring to Example 28-11 The...Ch. 28 - Predictf/Calculate Referring to Example 28-11 The...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Explain the role of gene flow in the biological species concept.
Campbell Biology (11th Edition)
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
In tomato plants, purple leaf color is controlled by a dominant allele A, and green leaf by a recessive allele ...
Genetic Analysis: An Integrated Approach (3rd Edition)
4. Three groups of nonvascular plants are _______, ______, and _______. Three groups of seedless vascular plant...
Biology: Life on Earth (11th Edition)
Which of the following factors would tend to increase membrane fluidity? A. a greater proportion of unsaturated...
Campbell Biology in Focus (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- AMPS VOLTS OHMS 5) 50 A 110 V 6) .08 A 39 V 7) 0.5 A 60 8) 2.5 A 110 Varrow_forwardThe drawing shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m², while surface (2) has an area of 3.90 m². The electric field in the drawing is uniform and has a magnitude of 215 N/C. Find the magnitude of the electric flux through surface (1 and 2 combined) if the angle 8 made between the electric field with surface (2) is 30.0°. Solve in Nm²/C 1 Ө Surface 2 Surface 1arrow_forwardPROBLEM 5 What is the magnitude and direction of the resultant force acting on the connection support shown here? F₁ = 700 lbs F2 = 250 lbs 70° 60° F3 = 700 lbs 45° F4 = 300 lbs 40° Fs = 800 lbs 18° Free Body Diagram F₁ = 700 lbs 70° 250 lbs 60° F3= = 700 lbs 45° F₁ = 300 lbs 40° = Fs 800 lbs 18°arrow_forward
- PROBLEM 3 Cables A and B are Supporting a 185-lb wooden crate. What is the magnitude of the tension force in each cable? A 20° 35° 185 lbsarrow_forwardThe determined Wile E. Coyote is out once more to try to capture the elusive Road Runner of Loony Tunes fame. The coyote is strapped to a rocket, which provide a constant horizontal acceleration of 15.0 m/s2. The coyote starts off at rest 79.2 m from the edge of a cliff at the instant the roadrunner zips by in the direction of the cliff. If the roadrunner moves with constant speed, find the minimum velocity the roadrunner must have to reach the cliff before the coyote. (proper sig fig in answer)arrow_forwardPROBLEM 4 What is the resultant of the force system acting on the connection shown? 25 F₁ = 80 lbs IK 65° F2 = 60 lbsarrow_forward
- Three point-like charges in the attached image are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 38.0 cm, and the point (C) is located half way between q1 and q3 along the side. Find the magnitude of the electric field at point (C). Let q1 = −2.80 µC, q2 = −3.40 µC, and q3 = −4.50 µC. Thank you.arrow_forwardSTRUCTURES I Homework #1: Force Systems Name: TA: PROBLEM 1 Determine the horizontal and vertical components of the force in the cable shown. PROBLEM 2 The horizontal component of force F is 30 lb. What is the magnitude of force F? 6 10 4 4 F = 600lbs F = ?arrow_forwardThe determined Wile E. Coyote is out once more to try to capture the elusive Road Runner of Loony Tunes fame. The coyote is strapped to a rocket, which provide a constant horizontal acceleration of 15.0 m/s2. The coyote starts off at rest 79.2 m from the edge of a cliff at the instant the roadrunner zips by in the direction of the cliff. If the roadrunner moves with constant speed, find the minimum velocity the roadrunner must have to reach the cliff before the coyote. (proper sig fig)arrow_forward
- Hello, I need some help with calculations for a lab, it is Kinematics: Finding Acceleration Due to Gravity. Equations: s=s0+v0t+1/2at2 and a=gsinθ. The hypotenuse,r, is 100cm (given) and a height, y, is 3.5 cm (given). How do I find the Angle θ1? And, for distance traveled, s, would all be 100cm? For my first observations I recorded four trials in seconds: 1 - 2.13s, 2 - 2.60s, 3 - 2.08s, & 4 - 1.95s. This would all go in the coloumn for time right? How do I solve for the experimental approximation of the acceleration? Help with trial 1 would be great so I can use that as a model for the other trials. Thanks!arrow_forwardAfter the countdown at the beginning of a Mario Kart race, Bowser slams on the gas, taking off from rest. Bowser get up to a full speed of 25.5 m/s due to an acceleration of 10.4 m/s2. A)How much time does it take to reach full speed? B) How far does Bowser travel while accelerating?arrow_forwardThe drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Side 1 has an area of 1.90 m^2, Side 2 has an area of 3.90 m^2, the electric field in magnitude is around 215 N/C. Please find the electric flux magnitude through side 1 and 2 combined if the angle (theta) made between the electric field with side 2 is 30.0 degrees. I believe side 1 is 60 degrees but could be wrong. Thank you.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY