As in Example 27.2, consider a power supply with fixed emf ε and internal resistance r causing current in a load resistance R . In this problem, R is fixed and r is a variable. The efficiency is defined as the energy delivered to the load divided by the energy delivered by the emf. (a) When the internal resistance is adjusted for maximum power transfer, what is the efficiency? (b) What should be the internal resistance for maximum possible efficiency? (c) When the electric company sells energy to a customer, does it have a goal of high efficiency or of maximum power transfer? Explain. (d) When a student connects a loudspeaker to an amplifier, does she most want high efficiency or high power transfer? Explain.
As in Example 27.2, consider a power supply with fixed emf ε and internal resistance r causing current in a load resistance R . In this problem, R is fixed and r is a variable. The efficiency is defined as the energy delivered to the load divided by the energy delivered by the emf. (a) When the internal resistance is adjusted for maximum power transfer, what is the efficiency? (b) What should be the internal resistance for maximum possible efficiency? (c) When the electric company sells energy to a customer, does it have a goal of high efficiency or of maximum power transfer? Explain. (d) When a student connects a loudspeaker to an amplifier, does she most want high efficiency or high power transfer? Explain.
Solution Summary: The author explains the formula to calculate the efficiency when the internal resistance is adjusted for maximum power transfer.
As in Example 27.2, consider a power supply with fixed emf ε and internal resistance r causing current in a load resistance R. In this problem, R is fixed and r is a variable. The efficiency is defined as the energy delivered to the load divided by the energy delivered by the emf. (a) When the internal resistance is adjusted for maximum power transfer, what is the efficiency? (b) What should be the internal resistance for maximum possible efficiency? (c) When the electric company sells energy to a customer, does it have a goal of high efficiency or of maximum power transfer? Explain. (d) When a student connects a loudspeaker to an amplifier, does she most want high efficiency or high power transfer? Explain.
3.63 • Leaping the River II. A physics professor did daredevil
stunts in his spare time. His last stunt was an attempt to jump across
a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at
53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower
than the top of the ramp. The river itself was 100 m below the ramp.
Ignore air resistance. (a) What should his speed have been at the top of
the ramp to have just made it to the edge of the far bank? (b) If his speed
was only half the value found in part (a), where did he land?
Figure P3.63
53.0°
100 m
40.0 m→
15.0 m
Please solve and answer the question correctly please. Thank you!!
You throw a small rock straight up from the edge of a highway bridge that crosses a river. The rock passes you on its way down, 5.00 s after it was thrown. What is the speed of the rock just before it reaches the water 25.0 m below the point where the rock left your hand? Ignore air resistance.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY