EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 9780100454897
Author: Jewett
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 28, Problem 28.31P
Using Kirchhoff’s rules, (a) find (he current in each resistor shown in Figure P28.51 and (b) find the potential difference between points c and f.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Consider the three resistors R1 = 12 0, R2= 39 0, and R3= 78 Q in the configuration shown in
the figure. A potential difference AV= 1.5 Vis applied between A and B.
A. Calculate the numerical value of 12 in A.
B. Calculate the numerical value of 13 through R3.
R2
A
R1
В
R3
A 22 Ω resistor and a 4 Ω resistor are connected in series to an ideal 12 V battery.Find the current in each resistor.Answer in units of A.Find the potential difference across the firstresistor.Answer in units of V.Find the potential difference across the secondresistor.Answer in units of V.
Three resistors R, = 82.7 N, R, = 24.2 2, R2 = 70.0 N, and two batteries E, = 40.0 V, and Ɛ,
= 351 V are connected as shown in the diagram below.
%3D
R1
R2
R3
(a) What current flows through R
R21
and R,?
A
A
I2
I3
A
(b) What is the absolute value of the potential difference across R,, R2, and R,?
V
=
V
V
ww
ww
ww
Chapter 28 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 28 - To maximize the percentage of the power from the...Ch. 28 - With the switch in the circuit of Figure 27.4a...Ch. 28 - With the switch in the circuit of Figure 27.6a...Ch. 28 - Prob. 28.4QQCh. 28 - Consider the circuit in Figure 27.17 and assume...Ch. 28 - Is a circuit breaker wired (a) in series with the...Ch. 28 - A battery has some internal resistance. (i) Clan...Ch. 28 - The terminals of a battery are connected across...Ch. 28 - When operating on a 120-V circuit, an electric...Ch. 28 - If the terminals of a battery with zero internal...
Ch. 28 - Prob. 28.6OQCh. 28 - What is the time constant of the circuit shown in...Ch. 28 - When resistors with different resistances are...Ch. 28 - When resistors with different resistances are...Ch. 28 - The terminals of a battery are connected across...Ch. 28 - Are the two headlights of a car wired (a) in...Ch. 28 - In the circuit shown in Figure OQ28.12, each...Ch. 28 - Prob. 28.13OQCh. 28 - A circuit consists of three identical lamps...Ch. 28 - A series circuit consists of three identical lamps...Ch. 28 - Suppose a parachutist lands on a high-voltage wire...Ch. 28 - A student claims that the second of two lightbulbs...Ch. 28 - Why is ii possible for a bird to sit on a...Ch. 28 - Given three lightbulbs and a battery, sketch as...Ch. 28 - Prob. 28.5CQCh. 28 - Referring to Figure CQ28.6, describe what happens...Ch. 28 - Prob. 28.7CQCh. 28 - (a) What advantage does 120-V operation offer over...Ch. 28 - Prob. 28.9CQCh. 28 - Prob. 28.10CQCh. 28 - A battery has an emf of 15.0 V. The terminal...Ch. 28 - Two 1.50-V batterieswith their positive terminals...Ch. 28 - An automobile battery has an emf of 12.6 V and 171...Ch. 28 - As in Example 27.2, consider a power supply with...Ch. 28 - Three 100- resistors are connected as shown in...Ch. 28 - Prob. 28.6PCh. 28 - What is the equivalent resistance of the...Ch. 28 - Consider the two circuits shown in Figure P27.5 in...Ch. 28 - Consider the circuit shown in Figure P28.9. Find...Ch. 28 - (a) You need a 45- resistor, but the stockroom has...Ch. 28 - A battery with = 6.00 V and no internal...Ch. 28 - A battery with emf and no internal resistance...Ch. 28 - (a) Kind the equivalent resistance between points...Ch. 28 - (a) When the switch S in the circuit of Figure...Ch. 28 - Prob. 28.15PCh. 28 - Four resistors are connected to a battery as shown...Ch. 28 - Consider die combination of resistors shown in...Ch. 28 - For the purpose of measuring the electric...Ch. 28 - Calculate the power delivered to each resistor in...Ch. 28 - Why is the following situation impossible? A...Ch. 28 - Consider the circuit shown in Figure P28.21 on...Ch. 28 - In Figure P28.22, show how to add just enough...Ch. 28 - The circuit shown in Figure P27.17 is connected...Ch. 28 - For the circuit shown in Figure P28.24, calculate...Ch. 28 - What are the expected readings of (a) the ideal...Ch. 28 - The following equations describe an electric...Ch. 28 - Taking R = 1.00 k and = 250 V in Figure P27.19,...Ch. 28 - You have a faculty position at a community college...Ch. 28 - The ammeter shown in Figure P28.29 reads 2.00 A....Ch. 28 - In the circuit of Figure P28.30, determine (a) the...Ch. 28 - Using Kirchhoffs rules, (a) find (he current in...Ch. 28 - In the circuit of Figure P27.20, the current I1 =...Ch. 28 - In Figure P28.33, find (a) the current in each...Ch. 28 - For the circuit shown in Figure P27.22, we wish to...Ch. 28 - Find the potential difference across each resistor...Ch. 28 - (a) Can the circuit shown in Figure P27.21 be...Ch. 28 - An uncharged capacitor and a resistor are...Ch. 28 - Consider a series RC circuit as in Figure P28.38...Ch. 28 - A 2.00-nF capacitor with an initial charge of 5.10...Ch. 28 - A 10.0-F capacitor is charged by a 10.0-V battery...Ch. 28 - In the circuit of Figure P27.25, the switch S has...Ch. 28 - In the circuit of Figure P27.25, the switch S has...Ch. 28 - The circuit in Figure P28.43 has been connected...Ch. 28 - Show that the integral 0e2t/RCdtin Example 27.11...Ch. 28 - A charged capacitor is connected to a resistor and...Ch. 28 - Prob. 28.46PCh. 28 - Prob. 28.47PCh. 28 - Turn on your desk lamp. Pick up the cord, with...Ch. 28 - Assume you have a battery of emf and three...Ch. 28 - Find the equivalent resistance between points a...Ch. 28 - Four 1.50-V AA batteries in series are used to...Ch. 28 - Four resistors are connected in parallel across a...Ch. 28 - The circuit in Figure P27.35 has been connected...Ch. 28 - The circuit in Figure P27.34a consists of three...Ch. 28 - For the circuit shown in Figure P28.55. the ideal...Ch. 28 - The resistance between terminals a and b in Figure...Ch. 28 - (a) Calculate the potential difference between...Ch. 28 - Why is the following situation impossible? A...Ch. 28 - A rechargeable battery has an emf of 13.2 V and an...Ch. 28 - Find (a) the equivalent resistance of the circuit...Ch. 28 - When two unknown resistors are connected in series...Ch. 28 - When two unknown resistors are connected in series...Ch. 28 - The- pair of capacitors in Figure P28.63 are fully...Ch. 28 - A power supply has an open-circuit voltage of 40.0...Ch. 28 - The circuit in Figure P27.41 contains two...Ch. 28 - Two resistors R1 and R2 are in parallel with each...Ch. 28 - Prob. 28.67APCh. 28 - A battery is used to charge a capacitor through a...Ch. 28 - A young man owns a canister vacuum cleaner marked...Ch. 28 - (a) Determine the equilibrium charge on the...Ch. 28 - Switch S shown in Figure P28.71 has been closed...Ch. 28 - Three identical 60.0-W, 120-V lightbulbs are...Ch. 28 - A regular tetrahedron is a pyramid with a...Ch. 28 - An ideal voltmeter connected across a certain...Ch. 28 - In Figure P27.47, suppose the switch has been...Ch. 28 - Figure P27.48 shows a circuit model for the...Ch. 28 - The student engineer of a campus radio station...Ch. 28 - The circuit shown in Figure P28.78 is set up in...Ch. 28 - An electric teakettle has a multiposition switch...Ch. 28 - A voltage V is applied to a series configuration...Ch. 28 - In places such as hospital operating rooms or...Ch. 28 - The switch in Figure P27.51a closes when Vc23Vand...Ch. 28 - The resistor R in Figure P28.83 receives 20.0 W of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Figure P28.15 2) Using Kirchhoffs rules, (a) find the current in each resistor in Figure (28.24). (b) Find the potential difference between points c and f. Which point is at the higher potential? 4.00 k2 E2 R3 E3 60.0 V 80.0 V 70.0 V I2 13 I1 R2 3.00 k2 2.00 k2 a R1 Figure 28.24:arrow_forwardYou are working with an oceanographer who is studying how the ion concentration in seawater depends on depth. She shows you the device that she uses to measure the resistivity of water from a boat. It consists of a pair of concentric metallic cylinders at the end of a cable (as shown). Seawater flows freely between the two cylindrical shells. She makes a measurement by lowering the device into the water and applying a potential difference ΔV between the inner and outer cylinders. This produces an outward radial current I in the seawater between the shells. She shows you the current and voltage data for the water at a particular depth and is then called away to answer a long call on her cellphone about a laboratory issue back on the mainland. As she leaves, she says, “Have the resistivity of the water calculated when I get back.” She forgot to show you any tables or formulas to use to determine the resistivity, so you are on your own. Quick! Find an expression for the resistivity in…arrow_forwarda) determine the potential difference across each resistor in terms of E b) determine the current in each resistor in terms of I c) in the limit r3->infinity, what are the new values of the current in each resistor in terms of I, the original current in the battery?arrow_forward
- The following table gives the lengths of three copper rods, their diameters, and the potential differences between their ends. Rod Length Diameter Potential Difference 3d V. 2L d 2V 3L 2d 2V In the following questions, you will be asked to rank these rods. If multiple rods rank equally, use the same rank for each, then exclude the intermediate ranking (i.e. if objects A, B, and C must be ranked, and A and B must both be ranked fırst, the ranking would be A:Greatest, B:Greatest, C:Third greatest). If all rods rank equally, rank each as 'Greatest!. Rank the rods according to the magnitude of the electric field within them. Rod 1 Rod 2 Rod 3 123arrow_forwardcmid%3D91618&page=4 If 5.0 x 10 electrons pass through a 63.2 O resistor in 10 min, what is the potential difference across the resistor? use the charge of the electron to be -1.6 × 10-19 C. Select one: OA. 12.64 OB. 21.06 OC 505.60 OD.84.26 OE 5056.00 Next pagearrow_forwardA 100km long high voltage transmission line that uses an unknown material has a diameter of 3 cm and a potential difference of 220V is maintained across the ends. The average time between collision is 2.7 x 10-14 s and the free-electron density is 8.5 x 1026 /m³. d. Determine the resistivity of the unknown material in micro-ohmmeter. e. Determine the time taken by the electrons to travel the full length of the cable in mega- seconds.arrow_forward
- can u help me? tnxarrow_forwardA material is formed into a long rod with a square cross-section 0.50 cm on each side. When a 100 V voltage is applied across a 20 m length of the rod, a 5.0 A current is carried. a) What is the resistivity of the material? ρ = _______ Ω m b) Is the material a conductor, an insulator, or a semiconductor?arrow_forwardWire C and wire D are made from different materials and have length Lc = Lp = 2.6 m. The resistivity and diameter of wire C are 5.4 x 10-6 Q-m and 1.30 mm, and those of wire D are 2.9 x 10-6 Q-m and 0.60 mm. The wires are joined as shown in the figure and a current of 3.7 A is set up in them. What is the electric potential difference between (a) points 1 and 2 and (b) points 2 and 3? What is the rate at which energy is dissipated between (c) points 1 and 2 and (d) points 2 and 3? D Lp 1 3. (a) Number i Units V (b) Number i Units (c) Number i Units (d) Number i Unitsarrow_forward
- A typical lightning bolt may last for 0.197 s and transfer 1.13 x 1020 electrons. Calculate the average current (in A) in the lightning bolt. HINT Apply the definition of average current. A Click the hint button again to remove this hint.arrow_forwardA copper wire of length L and cross-sectional area A is connected to a potential difference V. The drift velocity is doubled if: a)the area of wire is halved. b)the length of the wire is halved. c)the potential difference is halved. d)the length of the wire is doubled. e)the radius of the wire is doubled.arrow_forwardThe resistances are R1 = 3 N and R2 = 50, and the ideal batteries have emfs §1 = 3 V, §2 = 4 V and §3 = 5 V. a.) Determine the magnitude and direction of the current in each branch. b.) What is the potential difference Vab = Va - Vo? R R R1 Rarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Circuits, Voltage, Resistance, Current - Physics 101 / AP Physics Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=q8X2gcPVwO0;License: Standard YouTube License, CC-BY