You have a faculty position at a community college and are m (caching a class in automotive technology. You are deep in a discussion of using jumper cables to start a car with a dead battery from a car with a fresh battery. You have drawn the circuit diagram in Figure P27.16 to explain the process. The battery on the left is the live batten- in the correctly functioning car, with emf ε and internal resistance R L where the L . subscript refers to “live.” Its terminals are connected directly across those of the dead battery, in the middle of the diagram, with emf ε and internal resistance R D where the D subscript refers to "dead” Then, the starter in the car with the dead battery is activated by closing the ignition switch, allowing the car to start. The resistance of the starter is R s . A student raises his hand and asks, “So is the dead battery being charged while the starter is operating?” How do you respond?
You have a faculty position at a community college and are m (caching a class in automotive technology. You are deep in a discussion of using jumper cables to start a car with a dead battery from a car with a fresh battery. You have drawn the circuit diagram in Figure P27.16 to explain the process. The battery on the left is the live batten- in the correctly functioning car, with emf ε and internal resistance R L where the L . subscript refers to “live.” Its terminals are connected directly across those of the dead battery, in the middle of the diagram, with emf ε and internal resistance R D where the D subscript refers to "dead” Then, the starter in the car with the dead battery is activated by closing the ignition switch, allowing the car to start. The resistance of the starter is R s . A student raises his hand and asks, “So is the dead battery being charged while the starter is operating?” How do you respond?
Solution Summary: The author explains that the circuit having live and dead batteries is shown in the following figure.
You have a faculty position at a community college and are m (caching a class in automotive technology. You are deep in a discussion of using jumper cables to start a car with a dead battery from a car with a fresh battery. You have drawn the circuit diagram in Figure P27.16 to explain the process. The battery on the left is the live batten- in the correctly functioning car, with emf ε and internal resistance RL where the L. subscript refers to “live.” Its terminals are connected directly across those of the dead battery, in the middle of the diagram, with emf ε and internal resistance RD where the D subscript refers to "dead” Then, the starter in the car with the dead battery is activated by closing the ignition switch, allowing the car to start. The resistance of the starter is Rs. A student raises his hand and asks, “So is the dead battery being charged while the starter is operating?” How do you respond?
Example
Two charges, one with +10 μC of charge, and
another with - 7.0 μC of charge are placed in
line with each other and held at a fixed distance
of 0.45 m. Where can you put a 3rd charge of +5
μC, so that the net force on the 3rd charge is
zero?
*
Coulomb's Law Example
Three charges are positioned as seen below. Charge
1 is +2.0 μC and charge 2 is +8.0μC, and charge 3 is -
6.0MC.
What is the magnitude and the direction of the force
on charge 2 due to charges 1 and 3?
93
kq92
F
==
2
r13 = 0.090m
91
r12 = 0.12m
92
Coulomb's Constant: k = 8.99x10+9 Nm²/C²
✓
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY