College Physics
College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
Question
Book Icon
Chapter 28, Problem 1RQ
To determine

The reason that the electrons in the Rutherford model fall into the nucleus.

Expert Solution & Answer
Check Mark

Answer to Problem 1RQ

Solution:

The reason for electrons to fall into the nucleus, according to the Rutherford atomic model, is the force of attraction between the positive nucleus and the negatively-charged electron.

Explanation of Solution

Introduction:

The Rutherford atomic model is also known as the planetary or nuclear model of an atom. This model designated the atom as a positively charged, dense, tiny core called as a nucleus. Electrons (negative constitutent of atom) constitute the mass of the atom. These electrons revolve at a certain distance from the nucleus similar to the way planets revolve around the Sun.

Explanation:

According to Rutherford’s postulate, electrons revolve at a very high speed around the nucleus of an atom in a particular orbit. However, accelerated charged particles release a certain amount of electromagnetic radiations. Therefore, the electrons revolving around the nucleus will also release electromagnetic radiation. This electromagnetic radiation will gain energy from the electronic motion, resulting in the shrinkage of the orbits. The orbits will shrink and collapse into the nucleus of the atom. The electrons will spiral into the nucleus in about 1012 s.

The electron spirals inward towards the nucleus as shown in the diagram:

College Physics, Chapter 28, Problem 1RQ

The given figure shows the emission of electromagnetic radiation by the accelerating electron as well as the shrinkage of the orbit of the electron.

Conclusion:

The force of attraction between the positive nucleus and the negatively-charged electron is the main cause for electrons to fall into the nucleus, according to the Rutherford atomic model.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
18 The nuclear atom model put forward by Ernest Rutherfort is Rutherford's model on a thin gold plate. It is based on the observation of the scattering behavior of the transmitted alpha particles. Accordingly, given which one is wrong?      a)  The positively charged protons inside the atom are concentrated in the nucleus.  B) Most of the alpha particles are backscattered after hitting the gold plate.  NS)  Few of the positively charged alpha particles hit the gold plate and are scattered back at a large angle.  D)  Most of the positively charged alpha particles passed through the gold plate without any scattering.  TO) The nucleus, where the protons are together, occupies a very small volume.
The most stable atoms are: b. a. Atoms with even number of protons, odd number of neutrons Atoms with odd number of protons, even number of neutrons Atoms with even number of protons, even number of neutrons d. Atoms with odd number of protons, odd number of neutrons C. Radioactivity is defined as An emission of radiation from unstable nuclei of element in the form of particles, electromagnetic radiation, or both a. b. Radiation in which a particle carries energy is capable of removing electrons from an atom, thus producing free radicals C. The rate of energy loss per unit path length d. The rate of decay of a radioactive material
Could you please give reasons for your choice of answers.     The harmonic oscillator is not the only potential that can describe nuclei. Why do we use it? Mark more than one answer if necessary.  A. Because it is easily tractable mathematically and computationally.    B. Because neutrons and protons are oscillating.    C. Because it provides equidistant energy levels.    D. Because it was originally used in explaining the blackbody radiation.    E. Because we can easily calculate both energies and wave functions using second quantization.

Chapter 28 Solutions

College Physics

Ch. 28 - Prob. 3MCQCh. 28 - Prob. 4MCQCh. 28 - Prob. 5MCQCh. 28 - Prob. 6MCQCh. 28 - Prob. 7MCQCh. 28 - Prob. 8MCQCh. 28 - Prob. 9MCQCh. 28 - Prob. 10MCQCh. 28 - Prob. 11MCQCh. 28 - Prob. 12MCQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 16CQCh. 28 - Prob. 17CQCh. 28 - Prob. 18CQCh. 28 - Prob. 19CQCh. 28 - Prob. 20CQCh. 28 - Prob. 21CQCh. 28 - Prob. 22CQCh. 28 - Prob. 23CQCh. 28 - Prob. 24CQCh. 28 - Prob. 25CQCh. 28 - Prob. 26CQCh. 28 - Prob. 27CQCh. 28 - Prob. 28CQCh. 28 - Prob. 29CQCh. 28 - Prob. 30CQCh. 28 - Prob. 31CQCh. 28 - Prob. 32CQCh. 28 - Prob. 33CQCh. 28 - Prob. 34CQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - 28.4 Lasers (a) A laser pulse emits 2.0 J of...Ch. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46PCh. 28 - Prob. 47PCh. 28 - Prob. 48PCh. 28 - Prob. 49PCh. 28 - Prob. 50PCh. 28 - Prob. 51PCh. 28 - Prob. 52PCh. 28 - Prob. 53PCh. 28 - Prob. 54PCh. 28 - Prob. 55PCh. 28 - Prob. 56PCh. 28 - Prob. 57PCh. 28 - Prob. 58PCh. 28 - Prob. 59GPCh. 28 - Prob. 60GPCh. 28 - Prob. 61GPCh. 28 - Prob. 62GPCh. 28 - Prob. 63GPCh. 28 - Prob. 64GPCh. 28 - Prob. 65GPCh. 28 - Prob. 66GPCh. 28 - Prob. 67GPCh. 28 - Prob. 68RPPCh. 28 - Prob. 69RPPCh. 28 - Prob. 70RPPCh. 28 - Prob. 71RPPCh. 28 - Prob. 72RPPCh. 28 - Prob. 73RPPCh. 28 - Prob. 74RPPCh. 28 - Prob. 75RPPCh. 28 - Prob. 76RPPCh. 28 - Prob. 77RPPCh. 28 - Prob. 78RPP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    College Physics
    Physics
    ISBN:9781285737027
    Author:Raymond A. Serway, Chris Vuille
    Publisher:Cengage Learning
    Text book image
    Principles of Physics: A Calculus-Based Text
    Physics
    ISBN:9781133104261
    Author:Raymond A. Serway, John W. Jewett
    Publisher:Cengage Learning
    Text book image
    College Physics
    Physics
    ISBN:9781305952300
    Author:Raymond A. Serway, Chris Vuille
    Publisher:Cengage Learning
  • Text book image
    College Physics
    Physics
    ISBN:9781938168000
    Author:Paul Peter Urone, Roger Hinrichs
    Publisher:OpenStax College
    Text book image
    Modern Physics
    Physics
    ISBN:9781111794378
    Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
    Publisher:Cengage Learning
    Text book image
    Intro Spectroscopy
    Physics
    ISBN:9781305221796
    Author:PAVIA
    Publisher:Cengage
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Intro Spectroscopy
Physics
ISBN:9781305221796
Author:PAVIA
Publisher:Cengage