EBK NUMERICAL METHODS FOR ENGINEERS
EBK NUMERICAL METHODS FOR ENGINEERS
7th Edition
ISBN: 8220100254147
Author: Chapra
Publisher: MCG
bartleby

Videos

Question
Book Icon
Chapter 28, Problem 15P
To determine

To calculate: The concentration of each reactant as the function of distance by using the finite difference approach, and apply centred finite-difference approximations with Δx=0.05 m.

Expert Solution & Answer
Check Mark

Answer to Problem 15P

Solution:

The concentration of each reactant as the function of distance is,

EBK NUMERICAL METHODS FOR ENGINEERS, Chapter 28, Problem 15P , additional homework tip  1

The below plot shows the distance versus reactant.

Explanation of Solution

Given Information:

The series of first order, liquid phase reactions is,

Ak1Bk2C

The second order ODEs by using the steady-state mass balance.

Dd2cadx2Udcadxk1ca=0Dd2cbdx2Udcbdx+k1cak2cb=0Dd2ccdx2Udccdx+k2cb=0

Here, c is the concentration (mol/L), x is the distance (m), D is the dispersion coefficient (0.1 m2/min), U is the velocity (1 m/min), k1 is the reaction rate (3/min), k2 is the reaction rate (1/min).

Refer to the Prob 28.14, the Danckwerts boundary conditions is,

Ucin=Uc(x=0)Ddcdx(x=0)

dcdx(x=L)=0

Here, ca,in is the concentration in the inflow (10 mol/L), and L is the length of the reactor (0.5 m).

Δx=0.05 m

Formula used:

The finite divided difference formula is,

f(x0)=ci12ci+ci+1Δx2

Calculation:

Recall the ordinary differential equations,

Dd2cadx2Udcadxk1ca=0Dd2cbdx2Udcbdx+k1cak2cb=0Dd2ccdx2Udccdx+k2cb=0

Substitute the finite divided difference formula in the above differential equations.

D(ca,i12ca,i+ca,i+1Δx2)U(ca,i+1ca,i12Δx)k1ca,i=0D(cb,i12cb,i+cb,i+1Δx2)U(cb,i+1cb,i12Δx)+k1ca,ik2cb,i=0D(cc,i12cc,i+cc,i+1Δx2)U(cc,i+1cc,i12Δx)+k2cb,i=0

Substitute (0.1 m2/min) for D, (1 m/min) for U, 0.05 m for Δx, (3/min) for k1, and (1/min) for k2 yield unit.

(0.1)(ca,i12ca,i+ca,i+1(0.05)2)(1)(ca,i+1ca,i12(0.05))(3)ca,i=0(0.1)(cb,i12cb,i+cb,i+1(0.05)2)(1)(cb,i+1cb,i12(0.05))+(3)ca,i(1)cb,i=0(0.1)(cc,i12cc,i+cc,i+1(0.05)2)(1)(cc,i+1cc,i12(0.05))+(1)cb,i=0

Solve further,

50ca,i1+83ca,i30ca,i+1=050cb,i1+81cb,i30cb,i+1=3ca,i50cc,i1+80cc,i30cc,i+1=cb,i

Now solve for inlet node i=1, use a finite difference approximation for the first derivative.

Here use the second order version from the Table 19.3 for the interior nodes,

Uca,in=Uca,1Dca,3+4ca,23ca,12Δx

Ucb,in=Ucb,1Dcb,3+4cb,23cb,12Δx

Ucc,in=Ucc,1Dcc,3+4cc,23cc,12Δx

Can be solved for,

(3D2Δx2+UΔx)ca,1(2DΔx2)ca,2+(D2Δx2)ca,3=UΔxca,in

(3D2Δx2+UΔx)cb,1(2DΔx2)cb,2+(D2Δx2)cb,3=UΔxcb,in

(3D2Δx2+UΔx)cc,1(2DΔx2)cc,2+(D2Δx2)cc,3=UΔxcc,in

Substitute (0.1 m2/min) for D, (1 m/min) for U, 0.05 m for Δx, and 10 mol/L for ca,in yield unit.

80ca,180ca,2+20ca,3=200

80cb,180cb,2+20cb,3=0

80cc,180cc,2+20cc,3=0

Solve for the outer node (i=10), the zero derivative condition which implies that c11=c9,

(2DΔx2)c9+(2DΔx2+k)c10=0

The similar equations can be written for the other nodes, because the condition does not include reaction rates Substitute all the parameter gives,

80ca,9+83ca,10=080cb,9+81cb,10=3ca,10

80cc,9+80cc,10=cb,10

Rearrange the all equations in matrix form for each reactant separately, because the reactions are in series.

Write for the reactant A.

[808020000000005083300000000005083300000000005083300000000005083300000000005083300000000005083300000000005083300000000005083300000000005083300000000008380][ca,1ca,2ca,3ca,4ca,5ca,6ca,7ca,8ca,9ca,10ca,11]=[2000000000000]

Write the following code in MATLAB.

A=[80 -80 20 0 0 0 0 0 0 0 0

-50 83 -30 0 0 0 0 0 0 0 0

0 -50 83 -30 0 0 0 0 0 0 0

0 0 -50 83 -30 0 0 0 0 0 0

0 0 0 -50 83 -30 0 0 0 0 0

0 0 0 0 -50 83 -30 0 0 0 0

0 0 0 0 0 -50 83 -30 0 0 0

0 0 0 0 0 0 -50 83 -30 0 0

0 0 0 0 0 0 0 -50 83 -30 0

0 0 0 0 0 0 0 0 -50 83 -30

0 0 0 0 0 0 0 0 0 83 -80];

b=[200;0;0;0;0;0;0;0;0;0;0];

c=A\b;

c'

The output is,

ans =

Columns 1 through 5

8.0655 7.1509 6.3416 5.6270 4.9988

Columns 6 through 10

4.4516 3.9847 3.6050 3.3328 3.2123

Column 11

3.3328

Write the all the above equations in matrix form for the reactant B.

[808020000000005081300000000005081300000000005081300000000005081300000000005081300000000005081300000000005081300000000005081300000000005081300000000008180][cb,1cb,2cb,3cb,4cb,5cb,6cb,7cb,8cb,9cb,10cb,11]=[021.452719.024816.881014.996413.354811.954110.81509.99849.63699.6369]

Write the following code in MATLAB.

A=[80 -80 20 0 0 0 0 0 0 0 0

-50 81 -30 0 0 0 0 0 0 0 0

0 -50 81 -30 0 0 0 0 0 0 0

0 0 -50 81 -30 0 0 0 0 0 0

0 0 0 -50 81 -30 0 0 0 0 0

0 0 0 0 -50 81 -30 0 0 0 0

0 0 0 0 0 -50 81 -30 0 0 0

0 0 0 0 0 0 -50 81 -30 0 0

0 0 0 0 0 0 0 -50 81 -30 0

0 0 0 0 0 0 0 0 -50 81 -30

0 0 0 0 0 0 0 0 0 81 -80];

b=[0;21.4527;19.0248;16.881;14.9964;13.3548;

11.9541;10.815;9.9984;9.6369;9.6369];

c=A\b;

c'

The output is,

ans =

1.6486 2.4090 3.0415 3.5629 3.9880 4.3295 4.5977 4.7997 4.9358

4.9938 4.9358

Write the all the above equations in matrix form for the reactant C.

[808020000000005080300000000005080300000000005080300000000005080300000000005080300000000005080300000000005080300000000005080300000000005080300000000008080][cc,1cc,2cc,3cc,4cc,5cc,6cc,7cc,8cc,9cc,10cc,11]=[02.40903.04153.56293.98804.32954.59774.79974.93584.99384.9358]

Write the following code in MATLAB.

A=[80 -80 20 0 0 0 0 0 0 0 0

-50 80 -30 0 0 0 0 0 0 0 0

0 -50 80 -30 0 0 0 0 0 0 0

0 0 -50 80 -30 0 0 0 0 0 0

0 0 0 -50 80 -30 0 0 0 0 0

0 0 0 0 -50 80 -30 0 0 0 0

0 0 0 0 0 -50 80 -30 0 0 0

0 0 0 0 0 0 -50 80 -30 0 0

0 0 0 0 0 0 0 -50 80 -30 0

0 0 0 0 0 0 0 0 -50 80 -30

0 0 0 0 0 0 0 0 0 80 -80];

b=[0;2.4090;3.0415;3.5629;3.9880;4.3295;

4.5977;4.7997;4.9358;4.9938;4.9358];

c=A\b;

c'

The output is,

Columns 1 through 7

0.2859 0.4402 0.6169 0.8101 1.0133 1.2191 1.4178

Columns 8 through 11

1.5957 1.7321 1.7949 1.7332

The reaction is in series, thus the system for each reactant is,

EBK NUMERICAL METHODS FOR ENGINEERS, Chapter 28, Problem 15P , additional homework tip  2

The below plot shows the distance versus reactant.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Assignment 10, Question 1, Problem Book #189 Problem Statement An ideal Brayton cycle operates with no reheat, intercooling, or regeneration. The com- pressor inlet conditions are 30°C and 1 bar. The compression ratio is 11. The turbine inlet temperature is 1,300 K. Determine the turbine exit temperature, the thermal efficiency, and the back work ratio. Use an air standard analysis. Answer Table Correct Stage Description Your Answer Answer * 1 Compressor inlet enthalpy (kJ/kg) Due Date Grade (%) Weight Attempt Action/Message Part Type 1 2 1 Compressor inlet relative pressure 1 Compressor exit relative pressure 1 Compressor exit enthalpy (kJ/kg) Compressor work (kJ/kg) Turbine inlet enthalpy (kJ/kg) Dec 5, 2024 11:59 pm Dec 5, 2024 11:59 pm Dec 5, 2024 11:59 pm 0.0 0.0 1 1/5 Submit Stage 1 0.0 1 1 Dec 5, 2024 11:59 pm 0.0 1 Dec 5, 2024 11:59 pm 0.0 1 2 Turbine inlet relative pressure Dec 5, 2024 11:59 pm Dec 5, 2024 11:59 pm 0.0 1 1/5 0.0 1 2 Combustion chamber heat addition (kJ/kg) Dec…
Assignment 10, Question 4, Problem Book #202 Problem Statement An ideal Brayton cycle with a two-stage compressor, a two-stage turbine, and a regenerator operates with a mass flow rate of 25 kg/s. The regenerator cold inlet is at 490 K and its effectiveness is 60%. Ambient conditions are 90 kPa and 20°C. The intercooler operates at 450 kPa and the reheater operates at 550 kPa. The temperature at the exit of the combustion chamber is 1,400 K. Heat is removed in the intercooler at a rate of 2.5 MW and heat is added in the reheater at a rate of 10 MW. Determine the thermal efficiency and the back work ratio. Use a cold air standard analysis with cp = 1.005 kJ/(kg K) and k = 1.4. . Answer Table Stage Description Your Answer Correct Answer Due Date Grade (%) 1 Thermal efficiency (%) Dec 5, 2024 11:59 pm 0.0 1 Weight Attempt Action/Message 1/5 Part Type Submit 1 Back work ratio (%) Dec 5, 2024 11:59 pm 0.0 1 * Correct answers will only show after due date has passed.
Assignment 10, Question 3, Problem Book #198 Problem Statement Consider a Brayton cycle with a regenerator. The regenerator has an effectiveness of 75%. The compressor inlet conditions are 1.2 bar and 300 K and the mass flowrate is 4.5 kg/s. The compressor outlet pressure is 9 bar. Both the compressor and turbine consist of a single isentropic stage. What minimum power output must be achieved before the regenerator begins to have a benefit? Use an air-standard analysis. Answer Table Correct Answer Stage Description Your Answer Due Date Grade (%) Part Weight Attempt Action/Message Туре 1 Power output (MW) Dec 5, 2024 11:59 pm 0.0 1 1/5 Submit * Correct answers will only show after due date has passed.

Chapter 28 Solutions

EBK NUMERICAL METHODS FOR ENGINEERS

Ch. 28 - An on is other malbatchre actor can be described...Ch. 28 - The following system is a classic example of stiff...Ch. 28 - 28.13 A biofilm with a thickness grows on the...Ch. 28 - 28.14 The following differential equation...Ch. 28 - Prob. 15PCh. 28 - 28.16 Bacteria growing in a batch reactor utilize...Ch. 28 - 28.17 Perform the same computation for the...Ch. 28 - Perform the same computation for the Lorenz...Ch. 28 - The following equation can be used to model the...Ch. 28 - Perform the same computation as in Prob. 28.19,...Ch. 28 - 28.21 An environmental engineer is interested in...Ch. 28 - 28.22 Population-growth dynamics are important in...Ch. 28 - 28.23 Although the model in Prob. 28.22 works...Ch. 28 - 28.25 A cable is hanging from two supports at A...Ch. 28 - 28.26 The basic differential equation of the...Ch. 28 - 28.27 The basic differential equation of the...Ch. 28 - A pond drains through a pipe, as shown in Fig....Ch. 28 - 28.29 Engineers and scientists use mass-spring...Ch. 28 - Under a number of simplifying assumptions, the...Ch. 28 - 28.31 In Prob. 28.30, a linearized groundwater...Ch. 28 - The Lotka-Volterra equations described in Sec....Ch. 28 - The growth of floating, unicellular algae below a...Ch. 28 - 28.34 The following ODEs have been proposed as a...Ch. 28 - 28.35 Perform the same computation as in the first...Ch. 28 - Solve the ODE in the first part of Sec. 8.3 from...Ch. 28 - 28.37 For a simple RL circuit, Kirchhoff’s voltage...Ch. 28 - In contrast to Prob. 28.37, real resistors may not...Ch. 28 - 28.39 Develop an eigenvalue problem for an LC...Ch. 28 - 28.40 Just as Fourier’s law and the heat balance...Ch. 28 - 28.41 Perform the same computation as in Sec....Ch. 28 - 28.42 The rate of cooling of a body can be...Ch. 28 - The rate of heat flow (conduction) between two...Ch. 28 - Repeat the falling parachutist problem (Example...Ch. 28 - 28.45 Suppose that, after falling for 13 s, the...Ch. 28 - 28.46 The following ordinary differential equation...Ch. 28 - 28.47 A forced damped spring-mass system (Fig....Ch. 28 - 28.48 The temperature distribution in a tapered...Ch. 28 - 28.49 The dynamics of a forced spring-mass-damper...Ch. 28 - The differential equation for the velocity of a...Ch. 28 - 28.51 Two masses are attached to a wall by linear...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Orthogonality in Inner Product Spaces; Author: Study Force;https://www.youtube.com/watch?v=RzIx_rRo9m0;License: Standard YouTube License, CC-BY
Abstract Algebra: The definition of a Group; Author: Socratica;https://www.youtube.com/watch?v=QudbrUcVPxk;License: Standard Youtube License