COLLEGE PHY2053 W/MODIFIED ACCESS>BI<
16th Edition
ISBN: 9781323515303
Author: Knight
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 14P
a.
To determine
The work function of the photocathode.
b.
To determine
The maximum kinetic energy of the emitted electrons.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Image intensifiers used in nightvision devices create a bright image from dim light by letting the light first fall on a photocathode. Electrons emitted by the photoelectric effect are accelerated and then strike a phosphorescent screen, causing it to glow more brightly than the original scene. Recent devices are sensitive to wavelengths as long as 900 nm, in the infrared.a. If the threshold wavelength is 900 nm, what is the work function of the photocathode?b. If light of wavelength 700 nm strikes such a photocathode, what will be the maximum kinetic energy, in eV, of the emitted electrons?
A certain photoelectric devise is sensitive to
wavelengths up to 940 nm.
a. What is the frequency associated with
this wavelength?
b. What is the work function for the cathode
if the threshold wavelength is 890 nm?
c. What is the frequency of 690 nm light?
d. If light with a wavelength of 690 nm
strikes the photocathode, what is the
maximum kinetic energy of
the emitted electrons?
A hollow metal sphere has an inner radius, R =5 cm, and an outer radius, R, = 6 cm. The
metal sphere is initially uncharged and a net charge, +Q, exists in its hollow region, as shown
in Figure 1. The sphere is then illuminated from outside by ultraviolet light of wavelength
2 = 220 nm, resulting in the emission of photoelectrons. The work function of the metal is
4.70 eV.
R,
Vo
Va
R2
Figure 1
(i)
If no photoelectrons emitted by the metal sphere can reach infinity, find the minimum
amount of net charge Q that should be located in the hollow region.
(ii)
If Q = 4x10 C, determine the amount of charge induced on the inner and outer
surfaces of the metal sphere, and estimate the number of photoelectrons that can reach
infinity.
Chapter 28 Solutions
COLLEGE PHY2053 W/MODIFIED ACCESS>BI<
Ch. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQCh. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQ
Ch. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 16CQCh. 28 - Prob. 17CQCh. 28 - Prob. 18CQCh. 28 - Prob. 19CQCh. 28 - Prob. 20CQCh. 28 - Prob. 21CQCh. 28 - Prob. 22CQCh. 28 - Prob. 23CQCh. 28 - Prob. 24CQCh. 28 - Prob. 25CQCh. 28 - Prob. 26CQCh. 28 - Prob. 27CQCh. 28 - Prob. 28MCQCh. 28 - Prob. 29MCQCh. 28 - Prob. 30MCQCh. 28 - Prob. 31MCQCh. 28 - Prob. 32MCQCh. 28 - Prob. 33MCQCh. 28 - Prob. 34MCQCh. 28 - Prob. 35MCQCh. 28 - Prob. 36MCQCh. 28 - Prob. 37MCQCh. 28 - Prob. 38MCQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46PCh. 28 - Prob. 47PCh. 28 - Prob. 48PCh. 28 - Prob. 49PCh. 28 - Prob. 50PCh. 28 - Prob. 51PCh. 28 - Prob. 52PCh. 28 - Prob. 53PCh. 28 - Prob. 54PCh. 28 - Prob. 55PCh. 28 - Prob. 56PCh. 28 - Prob. 57PCh. 28 - Prob. 58GPCh. 28 - Prob. 59GPCh. 28 - Prob. 60GPCh. 28 - Prob. 61GPCh. 28 - Prob. 62GPCh. 28 - Prob. 63GPCh. 28 - Prob. 64GPCh. 28 - Prob. 65GPCh. 28 - Prob. 66GPCh. 28 - Prob. 67GPCh. 28 - Prob. 68GPCh. 28 - Prob. 69GPCh. 28 - Prob. 70GPCh. 28 - Prob. 71GPCh. 28 - Prob. 72GPCh. 28 - Prob. 73GPCh. 28 - Prob. 74GPCh. 28 - Prob. 75GPCh. 28 - Prob. 76GPCh. 28 - Prob. 77GPCh. 28 - Prob. 78GPCh. 28 - Prob. 79MSPPCh. 28 - Prob. 80MSPPCh. 28 - Prob. 81MSPPCh. 28 - Prob. 82MSPPCh. 28 - Prob. 83MSPPCh. 28 - Prob. 84MSPPCh. 28 - Prob. 85MSPPCh. 28 - Prob. 86MSPPCh. 28 - Prob. 87MSPPCh. 28 - Prob. 88MSPPCh. 28 - Prob. 89MSPPCh. 28 - Prob. 90MSPPCh. 28 - Prob. 91MSPPCh. 28 - Prob. 92MSPP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 900-W microwave generator in an oven generates energy quanta of frequency 2560 MHz. (a) How many energy quanta does it emit per second? (b) How many energy quanta must be absorbed by a pasta dish placed in the radiation cavity to increase its temperature by 45.0 K? Assume that the dish has a mass of 0.5 kg and that its specific heat is 0.9 kcal/kg • K. (c) Assume that all energy quanta emitted by the generator are absorbed by the pasta dish. How long must we wait until the dish in (b) is ready?arrow_forwardA 400-nm laser beam is projected onto a calcium electrode. The power of the laser beam is 2.00 mW and the work function of calcium is 2.31 eV. (a) How many photoelectrons per second are ejected? (b) What net power is carried away by photoelectrons?arrow_forwardA laser with a power output of 2.00 mW at a 400-nm wavelength is used to project a beam of light onto a calcium photoelectrode. (a) How many photoelectrons leave the calcium surface per second? (b) What power is carried away by ejected photoelectrons, given that the work function of calcium is 2.31 eV? (c) Calculate the photocurrent. (d) If the photoelectrode suddenly becomes electrically insulated and the setup of two electrodes in the circuit suddenly starts to act like a 2.00-pF capacitor, how long will current flow before the capacitor voltage stops it?arrow_forward
- (a) Calculate the number of photoelectrons per second that are ejected from a 1.00-mm2 area of sodium metal by a 500-nm radiation with intensity I .30kW/m2 (the intensity of sunlight above Earth’s atmosphere). (b) Given the work function of the metal as 2.28 eV, what power is carried away by these photoelectrons?arrow_forwardA 200-W heater emits a 1.5-m radiation. (a) What value of the energy quantum does it emit? (b) Assuming that the specific heat of a 4.0-kg body is 0.83kcaI/kg • K, how many of these photons must be absorbed by the body to increase its temperature by 2 K? (c) How long does the heating process in (b) take, assuming that all radiation emitted by the heater gets absorbed by the body?arrow_forwardA 600-nm light falls on a photoelectric surface and electrons with the maximum kinetic energy of 0.17 eV are emitted. Determine (a) the work function and (b) the cutoff frequency of the surface. (c) What is the stopping potential when the surface is illuminated with light of wavelength 400 nm?arrow_forward
- (a) Calculate the wavelength of a photon that has the same momentum as a proton moving with 1% of the speed of light in a vacuum. (b) What is the energy of this photon in MeV? (c) What is the kinetic energy of the proton in MeV?arrow_forwardAn X-ray tube accelerates an electron with an applied voltage of 50 kV toward a metal target, (a) What is the shortest-wavelength X-ray radiation generated at the target? (b) Calculate the photon energy in eV. (c) Explain the relationship of the photon energy to the applied voltage.arrow_forwardAtoms can be ionized by thermal collisions, such as at the high temperatures found in the solar corona. One such ion is C+5, a carbon atom with only a single electron. (a) By what factor are the energies of its hydrogen-like levels greater than those of hydrogen? (b) What is the wavelength of the first line in this ion's Paschen series? (c) What type of EM radiation is this?arrow_forward
- An electron in a box is in the ground state with energy 2.0 eV. (a) Find the width of the box. (b) How much energy is needed to excite the electron to its first excited state? (c) If the electron makes a transition from an excited state to the ground state with the simultaneous emission of 30.0-eV photon, find the quantum number of the excited state?arrow_forward(a) Calculate the wavelength of a photon that has the same momentum as a proton moving at 1.00% of the speed of light. (b) What is the energy of the photon in MeV? (c) What is the kinetic energy of the proton in MeV?arrow_forward(a) What is the ratio of power outputs by two microwave ovens having frequencies of 950 and 2560 MHz, if they emit the same number of photons per second? (b) What is the ratio of photons per second if they have the same power output?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning