EBK COLLEGE PHYSICS, VOLUME 2
EBK COLLEGE PHYSICS, VOLUME 2
11th Edition
ISBN: 9781337514644
Author: Vuille
Publisher: CENGAGE LEARNING - CONSIGNMENT
bartleby

Concept explainers

Question
Book Icon
Chapter 28, Problem 11P

(a)

To determine

The radius of the orbit.

(a)

Expert Solution
Check Mark

Answer to Problem 11P

The radius of the orbit 0.212nm .

Explanation of Solution

Given Info: The Bohr radius is 0.0529nm .

Formula to calculate the radius is,

r=n2ao

  • r is radius of the orbit
  • n is energy level
  • ao is the Bohr radius

Substitute 2 for n , 0.0529nm for ao to find r .

r=(2)2(0.0529nm)=0.212nm

Thus, the radius of the orbit is 0.212nm

Conclusion:

Therefore, the radius of the orbit is 0.212nm .

(b)

To determine

The linear momentum of the electron.

(b)

Expert Solution
Check Mark

Answer to Problem 11P

The linear momentum of the electron is 9.95×1025kg-m/s .

Explanation of Solution

From unit conversion,

1nm=1×109m

Formula to calculate the momentum is,

p=mke2r

  • r is radius of the orbit
  • m is mass of electron
  • e is the charge of electron
  • k is Coulomb’s constant
  • p is momentum of the electron

Substitute 1.6×1019C for e , 0.212nm for r , 9.1×1031kg for m , 9×109N-m2/C2 for k to find p .

p=(9.1×1031kg)(9×109N-m2/C2)(1.6×1019C)2(0.212nm)(1×109nm1m)=9.95×1025kg-m/s

Thus, the momentum of the electron is 9.95×1025kg-m/s .

Conclusion:

Therefore, the momentum of the electron is 9.95×1025kg-m/s .

(c)

To determine

The angular momentum of the electron.

(c)

Expert Solution
Check Mark

Answer to Problem 11P

The angular momentum of the electron is 2.11×1034J-s .

Explanation of Solution

Formula to calculate the angular momentum is,

L=n(h2π)

  • L is angular momentum of the electron
  • n is state
  • h is the Planck’s constant

Substitute 2 for n , 6.63×1034J-s for h , to find L .

L=(2)(6.63×1034J-s2π)=2.11×1034J-s

Thus, the angular momentum of the electron is 2.11×1034J-s .

Conclusion:

Therefore, the angular momentum of the electron is 2.11×1034J-s .

(d)

To determine

The kinetic energy of the electron.

(d)

Expert Solution
Check Mark

Answer to Problem 11P

The kinetic energy of the electron is 3.4eV .

Explanation of Solution

Formula to calculate the kinetic energy is,

K.E=p22m

  • p is linear momentum of the electron
  • m is mass of the electron

From unit conversion,

1eV=1.6×1019J

Substitute 9.95×1025kg-m/s for p , 9.1×1031kg for m , to find K.E .

K.E=(9.95×1025kg-m/s)22(9.1×1031kg)(1eV1.6×1019J)=3.4eV

Thus, the kinetic energy of the electron is 3.4eV .

Conclusion:

Therefore, the kinetic energy of the electron is 3.4eV .

(e)

To determine

The potential energy of the electron.

(e)

Expert Solution
Check Mark

Answer to Problem 11P

The potential energy of the electron is 6.8eV .

Explanation of Solution

Formula to calculate the potential energy is,

P.E=ke2r

  • k is coulomb’s constant
  • e is the electronic charge
  • r is radius of the orbit

From unit conversion,

1eV=1.6×1019J

1nm=1×109m

Substitute 9×109N-m2/C2 for k , 1.6×1019C for e , 0.212nm for r , to find P.E .

P.E=(9×109N-m2/C2)(1.6×1019C)2(0.212nm)(1×109m1nm)(1eV1×1019J)=6.8eV

Thus, the potential energy of the electron is 6.8eV .

Conclusion:

Therefore, the potential energy of the electron is 6.8eV .

(f)

To determine

The total energy of the electron.

(f)

Expert Solution
Check Mark

Answer to Problem 11P

The total energy of the electron is 3.4eV .

Explanation of Solution

Formula to calculate the total energy is,

E=K.E+P.E

  • E is total energy
  • K.E is the kinetic energy electron
  • P.E is potential energy of the electron.

Substitute 3.4eV for K.E , 6.8eV for P.E , to find E .

E=(3.4eV)+(6.8eV)=3.4eV

Thus, the total energy of the electron is 3.4eV .

Conclusion:

Therefore, the total energy of the electron is 3.4eV

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]
Page 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Inquiry into Physics
Physics
ISBN:9781337515863
Author:Ostdiek
Publisher:Cengage
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College