The plotting of rate of heat transfer against the convection heat transfer coefficient for the surface emissivities of 0.1, 0.5, 0.8, and 1. Also, discuss the results.
Answer to Problem 100P
The plotting of rate of heat transfer against the convection heat transfer coefficient for the surface emissivities of 0.1, 0.5, 0.8, and 1 are shown in Figure (1) and results are discussed as below.
Explanation of Solution
Calculate the rate of heat transfer by convection.
Here, change in the temperature is
Calculate the rate of heat transfer by radiation.
Here, surface temperature is
Calculate the total rate of heat transfer from the ball.
Conclusion:
Let us solve for
Substitute
Substitute
Substitute 34.35 W for
Follow the above process to calculate the rate of heat transfer against the convection heat transfer coefficient for the surface emissivities of 0.1 and 0.5 using spreadsheet including equations (I), (II), and (III) as in table (1).
5 | 11.4511 | 2.04127 | 13.4924 | 10.2064 | 21.6575 |
7.5 | 17.1767 | 2.04127 | 19.2179 | 10.2064 | 27.383 |
10 | 22.9022 | 2.04127 | 24.9435 | 10.2064 | 33.1086 |
12.5 | 28.6278 | 2.04127 | 30.669 | 10.2064 | 38.8341 |
15 | 34.3533 | 2.04127 | 36.3946 | 10.2064 | 44.5597 |
17.5 | 40.0789 | 2.04127 | 42.1201 | 10.2064 | 50.2852 |
20 | 45.8044 | 2.04127 | 47.8457 | 10.2064 | 56.0108 |
22.5 | 51.53 | 2.04127 | 53.5712 | 10.2064 | 61.7363 |
25 | 57.2555 | 2.04127 | 59.2968 | 10.2064 | 67.4619 |
27.5 | 62.9811 | 2.04127 | 65.0224 | 10.2064 | 73.1874 |
30 | 68.7066 | 2.04127 | 70.7479 | 10.2064 | 78.913 |
Continue table (1) for
16.3302 | 27.7813 | 20.4127 | 31.8638 |
16.3302 | 33.5068 | 20.4127 | 37.5894 |
16.3302 | 39.2324 | 20.4127 | 43.3149 |
16.3302 | 44.9579 | 20.4127 | 49.0405 |
16.3302 | 50.6835 | 20.4127 | 54.766 |
16.3302 | 56.4091 | 20.4127 | 60.4916 |
16.3302 | 62.1346 | 20.4127 | 66.2172 |
16.3302 | 67.8602 | 20.4127 | 71.9427 |
16.3302 | 73.5857 | 20.4127 | 77.6683 |
16.3302 | 79.3113 | 20.4127 | 83.3938 |
16.3302 | 85.0368 | 20.4127 | 89.1194 |
Show the plotting of rate of heat transfer against the convection heat transfer coefficient for the surface emissivities of 0.1, 0.5, 0.8, and 1.0 using Table (1) and (2) as in Figure (1).
Want to see more full solutions like this?
Chapter 2 Solutions
Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
- Consider a person standing in a room at 23°C. Determine the total rate of heat transfer from this person if the exposed surface area and the skin temperature of the person arel.7 m2 and 32°C, respectively, and the convection heat transfer coefficient is 5 W/m2· °C. Take the emissivity of the skin and the clothes to be 0.9, and assume the temperature of the inner surfaces of the room to be the same as the air temperature.arrow_forwardA fan forces air over a computer circuit board with an area of 0.01 m2 to keep the circuit board cool. If the temperature of the surface is at 350 K and the incoming air is at 298 K, determine the rate of heat transfer in W. Assume the heat transfer coefficient is 20 W/(m2K). Report your answer to one decimal place.arrow_forward2-105 The outer surface of a spacecraft in space has an emis- sivity of 0.6 and an absorptivity of 0.2 for solar radiation. If solar radiation is incident on the spacecraft at a rate of 1000 W/m², determine the surface temperature of the spacecraft when the radiation emitted equals the solar energy absorbed.arrow_forward
- Hot air at 80°C is blown over a 2-m x 4-m flat surface at 30°C. If the convection heat transfer coefficient is 90 W/m2.°C, determine the rate of heat transfer from the air to the plate, in kW. The rate of heat transfer from the air to the plate is kW.arrow_forwardA cat has a body temperature of 48 ºC. She stays inside a closed air conditioned room that has an inside wall temperature and inside air temperature of 40 and 35 ºC, respectively. The temperature of the room’s outside wall and the air outside the room are measured to be 45 and 50 ºC, respectively. The convection heat transfer coefficient between the cat and the inside air is 5 W/m2 ºC and the convection heat transfer coefficient between the outside air and outside wall is 35 W/m2 ºC. Use 0 ºC = 273.15 K to calculate the heat losses per unit area (W/m2 ) from the cat if the emissivity of the cat is 0.85.arrow_forwardConsider steady heat transfer between two large parallel plates at constant temperatures of T1 = 300 K and T2 = 200 K that are L = 1 cm apart, as shown in Fig. 1–44. Assuming the surfaces to be black (emissivity ε = 1), determine the rate of heat transfer between the plates per unit surface area assuming the gap between the plates is (a) filled with still air with k= 0.0219 W/m°C, (b) free flowing air with h= 7.5 W/m^2°C, (c) evacuatedarrow_forward
- Consider a person standing in a breezy room at 20°C. Determine the total rate of heat transfer from this person if the exposed surface area and the average outer surface temperature of the person are 1.6 m2 and 29°C, respectively, and the convection heat transfer coefficient is 6 W/m2 ·°C (Fig. 2–75).arrow_forwardAn aluminum plate, with dimensions of 3 cm × 3 cm × 5 cm (length, width, and thickness, respectively), is exposed to a thermal energy source that puts out 150 J every second. The density of aluminum is 2700 kg⁄m3 . Assuming no heat loss to the surrounding block, determine the temperature rise in the plate after 10 seconds.arrow_forwardThe inner and outer surfaces of a 0.5-cm-thick 2-m by 2-m window glass in winter are 10°C and 3°C, respectively. If the thermal conductivity of the glass is 0.78 W/m · °C, determine the rate of heat loss, in Watt, through the glass. What would your answer be if the glass were 1cm thick?arrow_forward
- 3-26 Consider a person standing in a room at 20°C with an exposed surface area of 1.7 m². The deep body temperature of the human body is 37°C, and the thermal conductivity of the human tissue near the skin is about 0.3 W/m · °C. The body is losing heat at a rate of 150 W by natural convection and radia- tion to the surroundings. Taking the body temperature 0.5 cm beneath the skin to be 37°C, determine the skin temperature of the person.arrow_forwardHot air at 80°C is blown over a 2-m x 4-m flat surface at 30°C. If the convection heat transfer coefficient is 55 W/m2-°C, determine the rate of heat transfer from the air to the plate, in kW.arrow_forwardTransPipe company is going to transport a flammable liquid. It is known that this liquid is being transported in a pipe (I.D=10 m) where heat (20 kW) is added to the liquid. The specific heat and density of this liquid are given as 2.5 kJ/kg.K and 790 kg/m², respectively. The volume flow rate of the liquid that is necessary to keep the liquid temperature below its flashpoint (16 °C) is to be determined. Assume steady operating conditions exist and fluid properties are constant. Determine: (1) the minimum volume flow rate of the liquid to maintain the liquid in the pipe well below its flashpoint. (2) If the company wants to reduce the minimum volume flow rate below your calculated minimum volume flow rate, what can they retrofit? You as an engineer, give them one suggestion (less than 20 words). Liquid T = 10°C Toutarrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning