
Concept explainers

The missing values in the given table.
Answer to Problem 8PP
EP = 277 V | ES1 = 480 V | ES2 = 208 V | ES3 = 120 V |
IP = 8.93 A | IS1 = 2.4 A | IS2 = 3.47 A | IS3 = 5 A |
NP = 350 turns | NS1 = 606 turns | NS = 263 turns | NS = 152 turns |
Ratio 1 =1:1.73 | Ratio 2 =1.33:1 | Ratio 3 = 2.30:1 | |
R1 =200 Ω | R2 = 60 Ω | R3 = 24 Ω |
Explanation of Solution
The transformer in the fig 27-17 contains one primary winding and three secondary windings.
The primary is connected to 277 V AC and contains 350 turns of wire.
One secondary has an output voltage of 480 volts and a load resistance of 200 Ω.
Second secondary has an output voltage of 208 volts and a load resistance of 60 Ω.
Third secondary has an output voltage of 120 volts and a load impedance of 24 Ω.
The turns ratio of the first secondary can be found by dividing the smaller voltage into the larger:
The turns ratio of the first secondary is re written as,
The current flow in the first secondary can be calculated using Ohm’s law:
The amount of primary current needed to supply this secondary winding can be found using the turns ratio. As this primary has less voltage, it requires more current:
The number of turns of wire in the first secondary winding is found using the turns ratio. Because this secondary has a higher voltage than the primary, it must have more turns of wire:
The turns ratio of the second secondary winding is found by dividing the higher voltage by the lower:
The turns ratio of the second secondary is re written as,
The amount of current flow in this secondary can be determined using Ohm’s law:
The amount of primary current needed to supply this secondary winding can be found using the turns ratio. As this primary has more voltage, it requires less current:
Because the voltage of this secondary is lesser than the primary, it has less turns of wire than the primary. The number of turns of this secondary is found using the turns ratio:
The turns ratio of the third secondary winding is calculated in the same way as the other two. The larger voltage is divided by the smaller:
The turns ratio of the third secondary is re written as,
The secondary current is found using Ohm’s law:
The amount of primary current needed to supply this secondary winding can be found using the turns ratio. As this primary has more voltage, it requires less current:
Because the voltage of this secondary is lesser than the primary, it has less turns of wire than the primary. The number of turns of this third secondary is found using the turns ratio:
The primary must supply current to each of the three secondary windings. Therefore, the total amount of primary current is the sum of the currents required to supply each secondary:
Want to see more full solutions like this?
Chapter 27 Solutions
Delmar's Standard Textbook Of Electricity
- し الإنجليزية (second order differential I need an example on the subject the partition method and the equations) and you solve it using Laplace method. Suggest an easy and simple example for me and solve it using two methods, only one example. الله X 9.01 P+96erarrow_forwardI need an example on the subject (second order differential equations) and you solve it using the partition method and the Laplace method. Suggest an easy and simple example for me and solve it using two methods, only one example.arrow_forward5- Discuss your resultsarrow_forward
- Write a program to flash three LED's connected to ports (8, 9 & 10) respectively as shown below: (Note: T₁-T3-5s & T₂=3s) LED, (pin 10) 2. Suen LED₂ (pin 9) LED, (pin 8) T₁'T' T'arrow_forward3- Draw the waveform for the cct. shown in fig.(2) but after replaced Di by thyristor with a 30°, 90° . 4- Draw the waveform for the cat shown in fig.(2) but after replaced D1 and D3 by thyristors with α = 30° and a2 = 90°. V₁ Det Ve DAX 뭔가 No Fig. (2)arrow_forwardWrite a program to flash three LED's connected to ports (11, 12 & 13) respectively as shown below: (Note: T-T3-3s & T₂= T₁=2s) LED (pin 11) LED2 (pin 12) LED: (pin 13) T' T2 T3' 14arrow_forward
- Not use ai pleasearrow_forwardSuppose you have three push buttons connected to (B5, B6 & B7) and eight LED's connected to (Do D7): Write a program to flash ON the odd LED's if we press the switch B7 for 0.4s, flash ON the even LED's if we press the switch (B6 for 0.4s and flash ON all the LED's if we press the switch B5 for 0.7s.arrow_forwardSuppose you have two push buttons connected to ports (0 & 1) and four LED's connected to ports (6-9). Write a program to flash ON the odd LED's if we press the switch 0 for 4s, flash ON the even LED's if we press the switch 1 for 5s and flash ON all the LED's otherwise for 6s.arrow_forward
- 1. Figure 2 shows a filter. Transpose the filter by first converting it into a DFG and redraw the transposed filter + (✗ D + × y(n) ✗ (☑ (x) (+ 4D (×→+) D u(n) ✗ (☑ + Figure 2: Filter structure. D Darrow_forwardDesign a 4-bit circuit with 2 outputs A and B. A is 1 if the input is divisible by 2 and B is 1 if the input is divisible by 3. Simplify A and B and implement the circuit.a. Draw KMAP for A and B and simplify them and then draw circuitarrow_forwardQuestion 1. Design a 4-bit combinational circuit for a 2’s complementer. The circuit generates at the output the 2’s complement of the input binary numbers.a) Complete the following truth table. A, B, C, D indicate the input binary number to be complement- ed using 2’s complement and W, X, Y, Z represent the output 2’s complement of the input binary number. The variable D is the least significant bit and A is the most significant bit of the binary number.b) Simplify the Boolean function W in its Sum-of-Products (SOP) form using a K-Map (you do not have to show the circuit) and provide its simplified Boolean expression.c) Show that the Boolean function W can be realized using exclusive-OR (XOR) gates and OR gates draw its corresponding logic circuit.d) Simplify the Boolean function Z in its Product-of-Sums (POS) form using a K-Map, provide its simplified Boolean expression and draw its corresponding logic circuit.arrow_forward
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning
