A uniform conducting rod of length d and mass m sits atop a fulcrum, which is placed a distance d /4 from the rod’s left-hand end and is immersed in a uniform magnetic field of magnitude B directed into the page (Fig. 27–57). An object whose mass M is 8.0 times greater than the rod’s mass is hung from the rod's left-hand end. What current (direction and magnitude) should flow through the rod in order for it to be “balanced” (i.e., be at rest horizontally) on the fulcrum? (Flexible connecting wires which exert negligible force on the rod are not shown.)
A uniform conducting rod of length d and mass m sits atop a fulcrum, which is placed a distance d /4 from the rod’s left-hand end and is immersed in a uniform magnetic field of magnitude B directed into the page (Fig. 27–57). An object whose mass M is 8.0 times greater than the rod’s mass is hung from the rod's left-hand end. What current (direction and magnitude) should flow through the rod in order for it to be “balanced” (i.e., be at rest horizontally) on the fulcrum? (Flexible connecting wires which exert negligible force on the rod are not shown.)
A uniform conducting rod of length d and mass m sits atop a fulcrum, which is placed a distance d/4 from the rod’s left-hand end and is immersed in a uniform magnetic field of magnitude B directed into the page (Fig. 27–57). An object whose mass M is 8.0 times greater than the rod’s mass is hung from the rod's left-hand end. What current (direction and magnitude) should flow through the rod in order for it to be “balanced” (i.e., be at rest horizontally) on the fulcrum? (Flexible connecting wires which exert negligible force on the rod are not shown.)
Required information
In a standard tensile test, a steel rod of 1 3 -in. diameter is subjected to a tension force of P = 21 kips. It is given that v=
0.30 and E= 29 × 106 psi.
1-in. diameter
P
P
-8 in.
Determine the change in diameter of the rod. (Round the final answer to six decimal places.)
The change in diameter of the rod is -
in.
5.84 ... If the coefficient of static friction between a table and a uni-
form, massive rope is μs, what fraction of the rope can hang over the
edge of the table without the rope sliding?
5.97 Block A, with weight Figure P5.97
3w, slides down an inclined plane
S of slope angle 36.9° at a constant
speed while plank B, with weight
w, rests on top of A. The plank
is attached by a cord to the wall
(Fig. P5.97). (a) Draw a diagram
of all the forces acting on block
A. (b) If the coefficient of kinetic
friction is the same between A and
B and between S and A, determine
its value.
B
36.9°
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.