College Physics: A Strategic Approach (4th Edition)
4th Edition
ISBN: 9780134609034
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 27, Problem 58GP
A very fast-moving train car passes you, moving to the right at 0.50c. You measure its length to be 12 m. Your friend David flies past you to the right at a speed relative to you of 0.80c. How long does David measure the train car to be?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 27 Solutions
College Physics: A Strategic Approach (4th Edition)
Ch. 27 - Prob. 1CQCh. 27 - Frame S moves relative to frame S as shown in...Ch. 27 - a. Two balls move as shown in Figure Q27.3. What...Ch. 27 - A lighthouse beacon alerts ships to the danger of...Ch. 27 - As a racket passes the earth at 0.75c, it fires a...Ch. 27 - At the instant that a clock standing next to you...Ch. 27 - Prob. 8CQCh. 27 - Firecrackers 1 and 2 are 600 m apart. You are...Ch. 27 - Your clocks and calendars are synchronized with...Ch. 27 - Two trees are 600 m apart. You are standing...
Ch. 27 - Prob. 12CQCh. 27 - In Figure Q27.12, clocks C1 and C2, in frame S are...Ch. 27 - Prob. 14CQCh. 27 - Prob. 15CQCh. 27 - Prob. 16CQCh. 27 - Prob. 17CQCh. 27 - The rocket speeds shown in Figure Q27.18 are...Ch. 27 - Can a particle of mass m have total energy less...Ch. 27 - In your chemistry classes, you have probably...Ch. 27 - Lee and Leigh are twins. At their first birthday...Ch. 27 - A space cowboy wants to eject from his spacecraft...Ch. 27 - Prob. 23MCQCh. 27 - Prob. 24MCQCh. 27 - A particle moving at speed 0.40c has momentum p0....Ch. 27 - A particle moving at speed 0.40c has kinetic...Ch. 27 - A sprinter crosses the finish line of a race. The...Ch. 27 - A baseball pitcher can throw a ball with a speed...Ch. 27 - A boy on a skateboard coasts along at 5 m/s. He...Ch. 27 - A boat takes 3.0 hours to travel 30 km down a...Ch. 27 - When the moving sidewalk at the airport is broken,...Ch. 27 - Prob. 6PCh. 27 - An out-of-control alien spacecraft is diving into...Ch. 27 - Prob. 8PCh. 27 - A starship blasts past the earth at 2.0 103 m/s....Ch. 27 - You are flying at 0.99c with respect to Kara. At...Ch. 27 - Prob. 11PCh. 27 - Bianca is standing at x = 600 m. Firecracker 1, at...Ch. 27 - You are standing at x = 9.0 km Lightning bolt 1...Ch. 27 - A light flashes at position x = 0 m. One...Ch. 27 - Jose is baking to the east. Lightning bolt 1...Ch. 27 - Your 1000-m-long starship has warning lights at...Ch. 27 - There is a lightbulb exactly halfway between the...Ch. 27 - Prob. 18PCh. 27 - A cosmic ray travels 60 km through the earths...Ch. 27 - Prob. 20PCh. 27 - At what speed relative to a laboratory does a...Ch. 27 - Prob. 22PCh. 27 - Prob. 23PCh. 27 - An astronaut travels to a star system 4.5 ly away...Ch. 27 - A subatomic particle moves through the laboratory...Ch. 27 - At what speed as a fraction of c, will a moving...Ch. 27 - Jill claims that her new rocket is 100 m long. As...Ch. 27 - Prob. 28PCh. 27 - A muon travels 60 km through the atmosphere at a...Ch. 27 - Prob. 30PCh. 27 - The Stanford Linear Accelerator (SLAC) accelerates...Ch. 27 - Our Milky Way galaxy is 100,000 ly in diameter. A...Ch. 27 - The X-15 rocket-powered plane holds the record for...Ch. 27 - Youre standing on an asteroid when you see your...Ch. 27 - A rocket cruising past earth at 0.800c shoots a...Ch. 27 - Prob. 36PCh. 27 - A base on Planet X fires a missile toward an...Ch. 27 - Prob. 38PCh. 27 - Prob. 39PCh. 27 - Prob. 40PCh. 27 - Prob. 41PCh. 27 - Prob. 42PCh. 27 - What are the kinetic energy, the rest energy, and...Ch. 27 - Prob. 44PCh. 27 - A quarter-pound hamburger with all the fixings has...Ch. 27 - Prob. 46PCh. 27 - How fast much an electron move so that its total...Ch. 27 - Prob. 48PCh. 27 - At what speed is a particle's kinetic energy twice...Ch. 27 - Prob. 50PCh. 27 - Prob. 51PCh. 27 - Prob. 52PCh. 27 - The chemical energy of gasoline is 46 MJ/kg. If...Ch. 27 - A standard nuclear power plant generates 3.0 GW of...Ch. 27 - A firecracker explodes at x = 0 m, t = 0 s. A...Ch. 27 - Prob. 56GPCh. 27 - Prob. 57GPCh. 27 - A very fast-moving train car passes you, moving to...Ch. 27 - A spaceship heads directly toward an asteroid at a...Ch. 27 - Prob. 60GPCh. 27 - Prob. 61GPCh. 27 - Prob. 62GPCh. 27 - A spaceship flies past an experimenter who...Ch. 27 - Marissas spaceship approaches Josephs at a speed...Ch. 27 - At a speed of 0.90c, a spaceship travels to a star...Ch. 27 - Prob. 66GPCh. 27 - A rocket traveling at 0.500c sets out for the...Ch. 27 - A distant quasar is found to be moving away from...Ch. 27 - A space beacon on Planet Karma emits a pulse of...Ch. 27 - Two rockets, A and B, approach the earth from...Ch. 27 - Prob. 71GPCh. 27 - What is the speed of an electron after being...Ch. 27 - What is the speed of a proton after being...Ch. 27 - Prob. 74GPCh. 27 - What is the total energy, in MeV, of a. A proton...Ch. 27 - Prob. 76GPCh. 27 - The sun radiates energy at the rate 3.8 1026 W....Ch. 27 - The radioactive element radium (Ra) decays by a...Ch. 27 - Prob. 79GPCh. 27 - Prob. 80GPCh. 27 - MCAT-Style Passage Problems Pion Therapy Subatomic...Ch. 27 - MCAT-Style Passage Problems Pion Therapy Subatomic...Ch. 27 - MCAT-Style Passage Problems Pion Therapy Subatomic...Ch. 27 - MCAT-Style Passage Problems Pion Therapy Subatomic...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Write each number in scientific notation.
4. 14,500
Applied Physics (11th Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
Choose the best answer to each of the following. Explain your reasoning. If you observe two Cepheid variable st...
Cosmic Perspective Fundamentals
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
19.9 A gas in a cylinder expands from a volume of 0.110 m3 to 0.320 m3. Heat flows into the gas just rapidly en...
University Physics (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two powerless rockets are on a collision course. The rockets are moving with speeds of 0.800c and 0.600c and are initially 2.52 × 1012 m apart as measured by Liz, an Earth observer, as shown in Figure P1.34. Both rockets are 50.0 m in length as measured by Liz. (a) What are their respective proper lengths? (b) What is the length of each rocket as measured by an observer in the other rocket? (c) According to Liz, how long before the rockets collide? (d) According to rocket 1, how long before they collide? (e) According to rocket 2, how long before they collide? (f) If both rocket crews are capable of total evacuation within 90 min (their own time), will there be any casualties? Figure P1.34arrow_forwardSpacecraft I, containing students taking a physics exam, approaches the Earth with a speed of 0.600c (relative to the Earth), while spacecraft II, containing professors proctoring the exam, moves at 0.280c (relative to the Earth) directly toward the students. If the professors stop the exam after 50.0 min have passed on their clock, for what time interval does the exam last as measured by (a) the students and (b) an observer on the Earth?arrow_forwardOwen and Dina are at rest in frame S. which is moving at 0.600c with respect to frame S. They play a game of catch while Ed. at rest in frame S, watches the action (Fig. P39.91). Owen throws the ball to Dina at 0.800c (according to Owen), and their separation (measured in S') is equal to 1.80 1012 m. (a) According to Dina, how fast is the ball moving? (b) According to Dina, what time interval is required for the ball to reach her? According to Ed, (c) how far apart are Owen and Dina, (d) how fast is the ball moving, and (e) what time interval is required for the ball to reach Dina?arrow_forward
- An observer in frame S sees lightning simultaneously strike two points 100 m apart. The first strike occurs at x1 = y1 = z1 = t1 = 0 and the second at x2 = 100 m, y2 = z2 = t2 = 0. (a) What are the coordinates of these two events in a frame S moving in the standard configuration at 0.70c relative to S? (b) How far apart are the events in S? (c) Are the events simultaneous in S? If not, what is the difference in time between the events, and which event occurs first?arrow_forwardOwen and Dina are at rest in frame S, which is moving at 0.600c with respect to frame S. They play a game of catch while Ed, at rest in frame S, watches the action (Fig. P9.63). Owen throws the ball to Dina at 0.800c (according to Owen), and their separation (measured in S) is equal to 1.80 1012 m. (a) According to Dina, how fast is the ball moving? (b) According to Dina, what time interval is required for the ball to reach her? According to Ed, (c) how far apart are Owen and Dina, (d) how fast is the ball moving, and (e) what time interval is required for the ball to reach Dina? Figure P9.63arrow_forwardAn alien spaceship traveling at 0.600c toward the Earth launches a landing craft. The landing craft travels in the same direction with a speed of 0.800c relative to the mother ship. As measured on the Earth, the spaceship is 0.200 ly from the Earth when the landing craft is launched. (a) What speed do the Earth-based observers measure for the approaching landing craft? (b) What is the distance to the Earth at the moment of the landing crafts launch as measured by the aliens? (c) What travel time is required for the landing craft to reach the Earth as measured by the aliens on the mother ship? (d) If the landing craft has a mass of 4.00 105 kg, what is its kinetic energy as measured in the Earth reference frame?arrow_forward
- Owen and Dina are at rest in frame S, which is moving with a speed of 0.600c with respect to frame S. They play a game of catch while Ed, at rest in frame S, watches the action (Fig. P26.45). Owen throws the ball to Dina with a speed of 0.800c (according to Owen) and their separation (measured in S) is equal to 1.80 1012 m. (a) According to Dina, how fast is the ball moving? (b) According to Dina, what time interval is required for the ball to reach her? According to Ed, (c) how far apart are Owen and Dina, and (d) how fast is the ball moving? Figure. P26.45arrow_forward(a) All but the closest galaxies are receding from our own Milky Way Galaxy. If a galaxy 12.0x109ly away is receding from us at 0.900c, at what velocity relative to us must we send an exploratory probe to approach the other galaxy at 0.990c as measured from that galaxy? (b) How long will it take the probe to reach the other galaxy as measured from Earth? You may assume that the velocity of the other galaxy remains constant. (c) How long will it then take for a radio signal to be beamed back? (All of this is possible in principle, but not practical.)arrow_forwardJoe and Moe are twins. In the laboratory frame at location S1 (2.00 km, 0.200 km, 0.150 km). Joe shoots a picture for aduration of t= 12.0 s. For the same duration as measured inthe laboratory frame, at location S2 (1.00 km, 0.200 km,0.300 km), Moe also shoots a picture. Both Joe and Moe begintaking their pictures at t = 0 in the laboratory frame. Determine the duration of each event as measured by an observer ina frame moving at a speed of 2.00 108 m/s along the x axisin the positive x direction. Assume that at t = t = 0, the origins of the two frames coincide.arrow_forward
- Suppose our Sun is about to explode. In an effort to escape, we depart in a spaceship at v = 0.80c and head toward the star Tau Ceti, 12 lightyears away. When we reach the midpoint of our journey from the Earth, we see our Sun explode and, unfortunately, at the same instant we see Tau Ceti explode as well. (a) In the spaceship’s frame of reference, should we conclude that the two explosions occurred simultaneously? If not, which occurred first? (b) In a frame of reference in which the Sun and Tau Ceti are at rest, did they explode simultaneously? If not, which exploded first?arrow_forwardConsider an electron moving with speed 0.980c. a. What is the rest mass energy of this electron? b. What is the total energyof this electron? c. What is the kinetic energy of this electron?arrow_forward(a) All but the closest galaxies are receding from our own Milky Way Galaxy. If a galaxy 12.0109ly ly away is receding from us at 0. 0.900c, at what velocity relative to us must we send an exploratory probe to approach the other galaxy at 0.990c, as measured from that galaxy? (b) How long will it take the probe to reach the other galaxy as measured from the Earth? You may assume that the velocity of the other galaxy remains constant. (c) How long will it then take for a radio signal to be beamed back? (All of this is possible in principle, but not practical.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY