Concept explainers
An electric motor, which has 95 percent efficiency, uses 20 A at 110 V. What is the horsepower output of the motor? How many watts are lost in thermal energy? How many calories of thermal energy are developed per second? If the motor operates for 3.0 h, what energy, in MJ and in kW • h, is dissipated?
The horsepower output of the motor, which is
Answer to Problem 28SP
Solution:
Explanation of Solution
Given Data:
The efficiency of the motor is
The current supplied is
The voltage supplied is
Formula used:
The expression of electrical power is written as,
Here,
The expression of converting power from
Here,
The expression of converting power from
Here,
The expression of energy is written as,
Here,
The expression of converting power from
Here,
Explanation:
Recall the expression of power input.
Here,
Substitute
Understand that the motor is
Recall the expression of power input.
Here,
Substitute
Recall the expression to convert the power from
Substitute
The power output of the motor is
Understand that the amount of loss in thermal energy is the loss of energy from the input to the output.
The expression of loss thermal energy in
Here,
Substitute
The loss thermal energy in
Understand that the due to energy balance, the amount of energy loss is equal to the energy developed.
Recall the expression of converting power from
Substitute
The calories developed per second is
Recall the expression of energy.
Substitute
Recall the expression of converting
Substitute
The energy dissipated if the motor works for
Conclusion:
Therefore, the power output of the motor is
Want to see more full solutions like this?
Chapter 27 Solutions
Schaum's Outline of College Physics, Twelfth Edition (Schaum's Outlines)
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill