EBK PHYSICS FOR SCIENTISTS AND ENGINEER
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
6th Edition
ISBN: 9781319321710
Author: Mosca
Publisher: VST
bartleby

Videos

Question
Book Icon
Chapter 27, Problem 23P
To determine

The proof that dBzdz=0,d2Bzdz2=0andd3Bzdz3=0 .

Expert Solution & Answer
Check Mark

Answer to Problem 23P

It is proved that dBzdz=0,d2Bzdz2=0andd3Bzdz3=0 .

Explanation of Solution

Formula used:

The expression for total magnetic fieldis given by,

  Bz=μ0nR2I2(z11+z21)

Calculation:

The total magnetic fieldis calculated as,

  dBzdz=ddz( μ 0 n R 2 I2( z 1 1 + z 2 1 ))=( μ 0 n R 2 I2)(3z1 4 d z 1 dz3z2 4 d z 2 dz) ....... (1)

Differentiate z1=( z+ 1 2 R)2+R2 with respect to z .

  dz1dz=ddz( ( z+ 1 2 R ) 2 + R 2 )=12( ( ( z+ 1 2 R ) 2 + R 2 ) 1 2 )(2( z+ 1 2 R))=( z+ 1 2 R)z1

Differentiate z2=( z 1 2 R)2+R2 with respect to z .

  dz2dz=ddz( ( z 1 2 R ) 2 + R 2 )=12( ( ( z 1 2 R ) 2 + R 2 ) 1 2 )(2( z 1 2 R))=( z 1 2 R)z2

Substitute (z+12R)z1 for dz1dz and (z12R)z2 for dz2dz in equation (1).

  dBzdz=( μ 0 n R 2 I2)(3z1 4( ( z+ 1 2 R ) z 1 )3z2 4( ( z 1 2 R ) z 2 ))=( μ 0 n R 2 I2)( 3( z+ 1 2 R ) z 1 5 + 3( z 1 2 R ) z 2 5 ) ....... (2)

Substitute 0 for z 54R2 for z1 and 54R2 for z2 in equation (2).

  dBzdz=( μ 0 n R 2 I2)( 3( 0+ 1 2 R ) 5 4 R 2 + 3( 0 1 2 R ) 5 4 R 2 )=0

Differentiate equation (2) with respect to z .

  d2Bzdz2=ddz[( μ 0 n R 2 I 2)( 3( z+ 1 2 R ) z 1 5 + 3( z 1 2 R ) z 2 5 )]=( μ 0 n R 2 I2)(3)( ( 1 z 1 5 5( z+ 1 2 R ) z 1 6 ( d z 1 dz ) ) +( 1 z 2 5 5( z+ 1 2 R ) z 2 6 ( d z 2 dz ) )) ....... (3)

Substitute (z+12R)z1 for dz1dz and (z12R)z2 for dz2dz in equation (3).

  d2Bzdz2=( μ 0 n R 2 I2)(3)( ( 1 z 1 5 5( z+ 1 2 R ) z 1 6 ( ( z+ 1 2 R ) z 1 ) ) +( 1 z 2 5 5( z+ 1 2 R ) z 2 6 ( ( z 1 2 R ) z 2 ) ))=( μ 0 n R 2 I2)(3)(( 1 z 1 5 5 ( z+ 1 2 R ) 2 z 1 7 )+( 1 z 2 5 5 ( z 1 2 R ) 2 z 2 7 )) ....... (4)

Substitute 0 for z 54R2 for z1 and 54R2 for z2 in equation (4).

  d2Bzdz2=( μ 0 n R 2 I2)(3)(( 1 ( 5 4 R 2 ) 5 2 5 ( 0+ 1 2 R ) 2 ( 5 4 R 2 ) 7 2 )+( 1 ( 5 4 R 2 ) 5 2 5 ( 0 1 2 R ) 2 ( 5 4 R 2 ) 7 2 ))=( μ 0 n R 2 I2)(3)(1 ( 5 4 R 2 ) 5 2 1 ( 5 4 R 2 ) 5 2 +1 ( 5 4 R 2 ) 5 2 +1 ( 5 4 R 2 ) 5 2 )=0

Differentiate equation (4) with respect to z .

  d3Bzdz3=ddz[( μ 0 n R 2 I 2)(3)(( 1 z 1 5 5 ( z+ 1 2 R ) 2 z 1 7 )+( 1 z 2 5 5 ( z 1 2 R ) 2 z 2 7 ))]=( μ 0 n R 2 I2)(3)[( 5 z 1 6 ( d z 1 dz ) 10( z+ 1 2 R ) z 1 7 35 ( z+ 1 2 R ) 2 z 1 8 ( d z 1 dz ) )+( 5 z 1 6 ( d z 2 dz ) 10( z 1 2 R ) z 1 7 35 ( z 1 2 R ) 2 z 1 8 ( d z 2 dz ) )] ....... (5)

Substitute (z+12R)z1 for dz1dz and (z12R)z2 for dz2dz in equation (5)

   d 3 B z d z 3 =( μ 0 n R 2 I 2 )( 3 )[ ( 5 z 1 6 ( ( z+ 1 2 R ) z 1 ) 10( z+ 1 2 R ) z 1 7 35 ( z+ 1 2 R ) 2 z 1 8 ( ( z+ 1 2 R ) z 1 ) )+ ( 5 z 1 6 ( ( z 1 2 R ) z 1 ) 10( z 1 2 R ) z 1 7 35 ( z 1 2 R ) 2 z 1 8 ( ( z 1 2 R ) z 1 ) ) ]

   =( μ 0 n R 2 I 2 )( 3 )( 15( z+ 1 2 R ) z 1 7 + 35 ( z+ 1 2 R ) 3 z 1 9 15( z 1 2 R ) z 2 7 + 35 ( z 1 2 R ) 2 z 2 9 )........ (6)

Substitute 0 for z 54R2 for z1 and 54R2 for z2 in equation (6).

  d3Bzdz3=( μ 0 n R 2 I2)(3)( 15( 0+ 1 2 R ) ( 5 4 R 2 ) 7 2 + 35 ( 0+ 1 2 R ) 3 ( 5 4 R 2 ) 9 2 15( z 1 2 R ) ( 5 4 R 2 ) 7 2 + 35 ( z 1 2 R ) 2 ( 5 4 R 2 ) 9 2 )=0

Conclusion:

Therefore, it is proved that dBzdz=0,d2Bzdz2=0andd3Bzdz3=0 .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Given water's mass of 18g/mole and the value of the fundamental charge (charge magnitude of the electron and proton), use the largest charge density from the article to determine what fraction of water molecules became ionized (charged) due to triboelectric effects when it flows through the material that causes the largest charge transfer.  Give your answer in e/molecule, or electrons transferred per molecule of water.  For instance, a value of 0.2 means only one in five molecules of water loses an electron, or that 0.2=20% of water molecules become charged
no AI, please
Sketch the resulting complex wave form, and then say whether it is a periodic or aperiodic wave.

Chapter 27 Solutions

EBK PHYSICS FOR SCIENTISTS AND ENGINEER

Ch. 27 - Prob. 11PCh. 27 - Prob. 12PCh. 27 - Prob. 13PCh. 27 - Prob. 14PCh. 27 - Prob. 15PCh. 27 - Prob. 16PCh. 27 - Prob. 17PCh. 27 - Prob. 18PCh. 27 - Prob. 19PCh. 27 - Prob. 20PCh. 27 - Prob. 21PCh. 27 - Prob. 22PCh. 27 - Prob. 23PCh. 27 - Prob. 24PCh. 27 - Prob. 25PCh. 27 - Prob. 26PCh. 27 - Prob. 27PCh. 27 - Prob. 28PCh. 27 - Prob. 29PCh. 27 - Prob. 30PCh. 27 - Prob. 31PCh. 27 - Prob. 32PCh. 27 - Prob. 33PCh. 27 - Prob. 34PCh. 27 - Prob. 35PCh. 27 - Prob. 36PCh. 27 - Prob. 37PCh. 27 - Prob. 38PCh. 27 - Prob. 39PCh. 27 - Prob. 40PCh. 27 - Prob. 41PCh. 27 - Prob. 42PCh. 27 - Prob. 43PCh. 27 - Prob. 44PCh. 27 - Prob. 45PCh. 27 - Prob. 46PCh. 27 - Prob. 47PCh. 27 - Prob. 48PCh. 27 - Prob. 49PCh. 27 - Prob. 50PCh. 27 - Prob. 51PCh. 27 - Prob. 52PCh. 27 - Prob. 53PCh. 27 - Prob. 54PCh. 27 - Prob. 55PCh. 27 - Prob. 56PCh. 27 - Prob. 57PCh. 27 - Prob. 58PCh. 27 - Prob. 59PCh. 27 - Prob. 60PCh. 27 - Prob. 61PCh. 27 - Prob. 62PCh. 27 - Prob. 63PCh. 27 - Prob. 64PCh. 27 - Prob. 65PCh. 27 - Prob. 66PCh. 27 - Prob. 67PCh. 27 - Prob. 68PCh. 27 - Prob. 69PCh. 27 - Prob. 70PCh. 27 - Prob. 71PCh. 27 - Prob. 72PCh. 27 - Prob. 73PCh. 27 - Prob. 74PCh. 27 - Prob. 75PCh. 27 - Prob. 76PCh. 27 - Prob. 77PCh. 27 - Prob. 78PCh. 27 - Prob. 79PCh. 27 - Prob. 80PCh. 27 - Prob. 81PCh. 27 - Prob. 82PCh. 27 - Prob. 83PCh. 27 - Prob. 84PCh. 27 - Prob. 85PCh. 27 - Prob. 86PCh. 27 - Prob. 87PCh. 27 - Prob. 88PCh. 27 - Prob. 89PCh. 27 - Prob. 90PCh. 27 - Prob. 91PCh. 27 - Prob. 92PCh. 27 - Prob. 93PCh. 27 - Prob. 94PCh. 27 - Prob. 95PCh. 27 - Prob. 96PCh. 27 - Prob. 97PCh. 27 - Prob. 98P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY