College Physics
College Physics
10th Edition
ISBN: 9781285737027
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 27, Problem 11P

(a)

To determine

The work function in Joules.

(a)

Expert Solution
Check Mark

Answer to Problem 11P

The work function in Joules is 1.02×1018J .

Explanation of Solution

The work function in joules is,

ϕJ=ϕeV(1.60×1019J1eV)

    • ϕJ is the work function in joules
    • ϕeV is the work function in electron volt

Substitute 6.35eV for ϕeV .

ϕJ=(6.35eV)(1.60×1019J1eV)=1.02×1018J

Conclusion:

Thus, the work function in Joules is 1.02×1018J .

(b)

To determine

The cutoff frequency for platinum.

(b)

Expert Solution
Check Mark

Answer to Problem 11P

The cutoff frequency for platinum is 1.53×1015Hz .

Explanation of Solution

The energy of the photon is,

Ephoton=hfc

    • h is the Plank’s constant
    • fc is the cutoff frequency

The cutoff frequency is,

fc=ϕh

Substitute 6.35eV for ϕ and 6.63×1034J.s for h .

fc=6.35eV6.63×1034J.s(1eV1.60×1019J)=1.53×1015Hz

Conclusion:

Thus, the cutoff frequency for platinum is 1.53×1015Hz .

(c)

To determine

The maximum wavelength of the light incident on the platinum surface.

(c)

Expert Solution
Check Mark

Answer to Problem 11P

The maximum wavelength of the light incident on the platinum surface is 196nm .

Explanation of Solution

The equation for cutoff wavelength is,

λc=hcϕ=cfc

Substitute 3.00×108m/s for c and 1.53×1015Hz for fc .

λc=3.00×108m/s1.53×1015Hz=1.96×107m=196nm

Conclusion:

Thus, the maximum wavelength of the light incident on the platinum surface is 196nm .

(d)

To determine

The maximum kinetic energy of the ejected photoelectrons.

(d)

Expert Solution
Check Mark

Answer to Problem 11P

The maximum kinetic energy of the ejected photoelectrons is 2.15eV .

Explanation of Solution

The equation for maximum kinetic energy is,

KEmax=Ephotonϕ

    • Ephoton is the energy of the photon

Substitute 8.50eV for Ephoton and 6.35eV for ϕ .

KEmax=8.50eV6.35eV=2.15eV

Conclusion:

Thus, the maximum kinetic energy of the ejected photoelectrons is 2.15eV .

(e)

To determine

The stopping potential required to arrest the current of photoelectrons.

(e)

Expert Solution
Check Mark

Answer to Problem 11P

The stopping potential required to arrest the current of photoelectrons is 2.15V .

Explanation of Solution

We have the relation,

eVs=KEmaxVs=KEmaxe

Substitute 2.15eV for KEmax and 1.60×1019C .

Vs=2.15eV1.60×1019C=2.15V

Conclusion:

Thus, the maximum kinetic energy of the ejected photoelectrons is 2.15eV

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Part A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?
The particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-
The 10-lb weight is supported by the cord AC and roller and by the spring that has a stiffness of k = 10 lb/in. and an unstretched length of 12 in. as shown in. Part A Determine the distance d to maintain equilibrium. Express your answer in inches to three significant figures. 節 ΕΠΙ ΑΣΦ d = *k J vec 5 t 0 ? d C A in. 12 in. B
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning