
Fundamentals of Engineering Thermodynamics, Binder Ready Version
8th Edition
ISBN: 9781118820445
Author: Michael J. Moran, Howard N. Shapiro, Daisie D. Boettner, Margaret B. Bailey
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 2.7, Problem 11E
To determine
In the differential form of the closed balance,
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A cantilevered rectangular prismatic beam has three loads applied. 10,000N in the positive x
direction, 500N in the positive z direction and 750 in the negative y direction. You have been tasked
with analysing the stresses at three points on the beam, a, b and c.
32mm
60mm
24mm
180mm
15mm
15mm
40mm
750N
16mm
500N
x
10,000N
Figure 2: Idealisation of the structure and the applied loading (right). Photograph of the new product
(left). Picture sourced from amazon.com.au.
To assess the design, you will:
a) Determine state of stress at all points (a, b and c). These points are located on the exterior
surface of the beam. Point a is located along the centreline of the beam, point b is 15mm
from the centreline and point c is located on the edge of the beam. When calculating the
stresses you must consider the stresses due to bending and transverse shear. Present your
results in a table and ensure that your sign convention is clearly shown (and applied
consistently!)
(3%)
b) You have identified…
7.82 Water flows from the reservoir on the left to the reservoir
on the right at a rate of 16 cfs. The formula for the head losses
in the pipes is h₁ = 0.02(L/D)(V²/2g). What elevation in the left
reservoir is required to produce this flow? Also carefully sketch
the HGL and the EGL for the system. Note: Assume the head-loss
formula can be used for the smaller pipe as well as for the larger
pipe. Assume α = 1.0 at all locations.
Elevation = ?
200 ft
300 ft
D₁ = 1.128 ft
D2=1.596 ft
12
2012
Problem 7.82
Elevation
= 110 ft
Homework#5
Chapter 2 Solutions
Fundamentals of Engineering Thermodynamics, Binder Ready Version
Ch. 2.7 - Prob. 1ECh. 2.7 - 2. What are several things you as an individual...Ch. 2.7 - 3. How does the kilowatt-hour meter in your house...Ch. 2.7 - 4. Why is it incorrect to say that a system...Ch. 2.7 - Prob. 5ECh. 2.7 - Prob. 6ECh. 2.7 - 7. When microwaves are beamed onto a tumor during...Ch. 2.7 - 8. For good acceleration, what is more important...Ch. 2.7 - 9. Experimental molecular motors are reported to...Ch. 2.7 - 10. For polytropic expansion or compression, what...
Ch. 2.7 - Prob. 11ECh. 2.7 - Prob. 12ECh. 2.7 - 13. What form does the energy balance take for an...Ch. 2.7 - 14. What forms of energy and energy transfer are...Ch. 2.7 - Prob. 15ECh. 2.7 - 16. Steve has a pedometer that reads kilocalories...Ch. 2.7 - Prob. 17ECh. 2.7 - Prob. 1CUCh. 2.7 - Prob. 11CUCh. 2.7 - Prob. 12CUCh. 2.7 - Prob. 13CUCh. 2.7 - Prob. 14CUCh. 2.7 - 15. In mechanics, the work of a resultant force...Ch. 2.7 - 16. What direction is the net energy transfer by...Ch. 2.7 - 17. The differential of work, δW, is said to be an...Ch. 2.7 - Prob. 18CUCh. 2.7 - Prob. 19CUCh. 2.7 - Prob. 20CUCh. 2.7 - Prob. 21CUCh. 2.7 - Prob. 22CUCh. 2.7 - Prob. 23CUCh. 2.7 - Prob. 24CUCh. 2.7 - Prob. 25CUCh. 2.7 - 26. State the sign convention used in...Ch. 2.7 - Prob. 27CUCh. 2.7 - Prob. 28CUCh. 2.7 - Prob. 29CUCh. 2.7 - 30. Based on the mechanisms of heat transfer, list...Ch. 2.7 - Prob. 31CUCh. 2.7 - Prob. 32CUCh. 2.7 - 33. The total energy of a closed system can change...Ch. 2.7 - 34. The energy of an isolated system can only...Ch. 2.7 - 35. If a closed system undergoes a thermodynamic...Ch. 2.7 - Prob. 36CUCh. 2.7 - Prob. 37CUCh. 2.7 - Prob. 38CUCh. 2.7 - Prob. 39CUCh. 2.7 - Prob. 40CUCh. 2.7 - Prob. 41CUCh. 2.7 - 42. A process that is adiabatic cannot involve...Ch. 2.7 - Prob. 43CUCh. 2.7 - Prob. 44CUCh. 2.7 - Prob. 45CUCh. 2.7 - Prob. 46CUCh. 2.7 - 47. A rotating flywheel stores energy in the form...Ch. 2.7 - Prob. 48CUCh. 2.7 - Prob. 49CUCh. 2.7 - 50. If a closed system undergoes a process for...Ch. 2.7 - Prob. 51CUCh. 2.7 - Prob. 52CUCh. 2.7 - Prob. 53CUCh. 2.7 - Prob. 54CUCh. 2.7 - 2.1 A baseball has a mass of 0.3 lb. What is the...Ch. 2.7 - 2.2 Determine the gravitational potential energy,...Ch. 2.7 - 2.3 An object whose weight is 100 lbf experiences...Ch. 2.7 - 2.4 A construction crane weighing 12.000 lbf fell...Ch. 2.7 - 2.5 An automobile weighing 2500 lbf increases its...Ch. 2.7 - 2.6 An object of mass 1000 kg, initially having a...Ch. 2.7 - 2.7 A 30-seat turboprop airliner whose mass is...Ch. 2.7 - 2.8 An automobile having a mass of 900 kg...Ch. 2.7 - 2.9 Vehicle crumple zones are designed to absorb...Ch. 2.7 - 2.10 An object whose mass is 300 lb experiences...Ch. 2.7 - Prob. 11PCh. 2.7 - 2.12 Using KE = Iω2/2 from Problem 2.11a, how fast...Ch. 2.7 - 2.13 Two objects having different masses are...Ch. 2.7 - 2.14 An object whose mass is 100 lb falls freely...Ch. 2.7 - 2.15 During the packaging process, a can of soda...Ch. 2.7 - 2.16 Beginning from rest, an object of mass 200 kg...Ch. 2.7 - 2.17 Jack, who weighs 150 lbf, runs 5 miles in 43...Ch. 2.7 - 2.18 An object initially at an elevation of 5 m...Ch. 2.7 - 2.19 An object of mass 10 kg, initially at rest,...Ch. 2.7 - 2.20 An object initially at rest experiences a...Ch. 2.7 - 2.21 The drag force, Fd, imposed by the...Ch. 2.7 - 2.22 A major force opposing the motion of a...Ch. 2.7 - 2.23 The two major forces opposing the motion of a...Ch. 2.7 - 2.24 Measured data for pressure versus volume...Ch. 2.7 - 2.25 Measured data for pressure versus volume...Ch. 2.7 - 2.26 A gas in a piston-cylinder assembly undergoes...Ch. 2.7 - 2.27 Carbon dioxide (CO2) gas within a...Ch. 2.7 - 2.28 A gas in a piston-cylinder assembly undergoes...Ch. 2.7 - 2.29 Nitrogen (N2) gas within a piston-cylinder...Ch. 2.7 - 2.30 Oxygen (O2) gas within a piston-cylinder...Ch. 2.7 - 2.31 A closed system consisting of 14.5 lb of air...Ch. 2.7 - 2.32 Air contained within a piston-cylinder...Ch. 2.7 - 2.33 A gas contained within a piston-cylinder...Ch. 2.7 - 2.34 Carbon monoxide gas (CO) contained within a...Ch. 2.7 - 2.35 Air contained within a piston-cylinder...Ch. 2.7 - 2.36 The belt sander shown in Fig. P2.36 has a...Ch. 2.7 - 2.37 A 0.15-m-diameter pulley turns a belt...Ch. 2.7 - 2.38 A 10-V battery supplies a constant current of...Ch. 2.7 - 2.39 An electric heater draws a constant current...Ch. 2.7 - 2.40 A car magazine article states that the power...Ch. 2.7 - 2.41 The pistons of a V-6 automobile engine...Ch. 2.7 - 2.42 Figure P2.42 shows an object whose mass is 5...Ch. 2.7 - Prob. 43PCh. 2.7 - 2.44 A soap film is suspended on a wire frame, as...Ch. 2.7 - 2.45 As shown in Fig. P2.45, a spring having an...Ch. 2.7 - 2.46 A fan forces air over a computer circuit...Ch. 2.7 - 2.47 As shown in Fig. P2.47, the 6-in.-thick...Ch. 2.7 - 2.48 As shown in Fig. P2.48, an oven wall consists...Ch. 2.7 - 2.49 A composite plane wall consists of a...Ch. 2.7 - 2.50 A composite plane wall consists of a...Ch. 2.7 - 2.51 An insulated frame wall of a house has an...Ch. 2.7 - 2.52 Complete the following exercise using heat...Ch. 2.7 - Prob. 53PCh. 2.7 - Prob. 54PCh. 2.7 - 2.55 The outer surface of the grill hood shown in...Ch. 2.7 - 2.56 Each line of the following table gives data...Ch. 2.7 - 2.57 Each line of the following table gives data,...Ch. 2.7 - 2.58 A closed system of mass 10 kg undergoes a...Ch. 2.7 - Prob. 59PCh. 2.7 - 2.60 A gas contained in a piston−cylinder assembly...Ch. 2.7 - 2.61 A gas contained within a piston−cylinder...Ch. 2.7 - 2.62 An electric motor draws a current of 10 amp...Ch. 2.7 - 2.63 As shown in Fig. P2.63, the outer surface of...Ch. 2.7 - 2.64 One kg of Refrigerant 22, initially at p1 =...Ch. 2.7 - 2.65 A gas is contained in a vertical...Ch. 2.7 - 2.66 A gas undergoes a process in a...Ch. 2.7 - 2.67 Four kilograms of carbon monoxide (CO) is...Ch. 2.7 - 2.68 Helium gas is contained in a closed rigid...Ch. 2.7 - 2.69 Steam in a piston−cylinder assembly undergoes...Ch. 2.7 - 2.70 Air expands adiabatically in a...Ch. 2.7 - 2.71 A vertical piston−cylinder assembly with a...Ch. 2.7 - 2.72 Gaseous CO2 is contained in a vertical...Ch. 2.7 - 2.73 Figure P2.73 shows a gas contained in a...Ch. 2.7 - 2.74 The following table gives data, in kJ, for a...Ch. 2.7 - 2.75 The following table gives data, in Btu, for a...Ch. 2.7 - 2.76 Figure P2.76 shows a power cycle executed by...Ch. 2.7 - 2.77 A gas within a piston−cylinder assembly...Ch. 2.7 - 2.78 A gas within a piston-cylinder assembly...Ch. 2.7 - 2.79 A gas undergoes a cycle in a piston-cylinder...Ch. 2.7 - 2.80 As shown in Fig. P2.80, a gas within a...Ch. 2.7 - Prob. 81PCh. 2.7 - Prob. 82PCh. 2.7 - Prob. 83PCh. 2.7 - Prob. 84PCh. 2.7 - 2.85 A concentrating solar collector system, as...Ch. 2.7 - Prob. 86PCh. 2.7 - Prob. 87PCh. 2.7 - Prob. 88PCh. 2.7 - 2.89 A refrigeration cycle operating as shown in...Ch. 2.7 - Prob. 90PCh. 2.7 - Prob. 91PCh. 2.7 - Prob. 92PCh. 2.7 - Prob. 93PCh. 2.7 - Prob. 94PCh. 2.7 - 2.95 A heat pump maintains a dwelling at 688F....Ch. 2.7 - 2.96 A heat pump cycle delivers energy by heat...
Knowledge Booster
Similar questions
- A closed-cycle gas turbine unit operating with maximum and minimum temperature of 760oC and 20oC has a pressure ratio of 7/1. Calculate the ideal cycle efficiency and the work ratioarrow_forwardConsider a steam power plant that operates on a simple, ideal Rankine cycle and has a net power output of 45 MW. Steam enters the turbine at 7 MPa and 500°C and is cooled in the condenser at a pressure of 10 kPa by running cooling water from a lake through the tubes of the condenser at a rate of 2000 kg/s. Show the cycle on a T-s diagram with respect to saturation lines, and determine The thermal efficiency of the cycle,The mass flow rate of the steam and the temperature rise of the cooling waterarrow_forwardTwo reversible heat engines operate in series between a source at 600°C, and a sink at 30°C. If the engines have equal efficiencies and the first rejects 400 kJ to the second, calculate: the temperature at which heat is supplied to the second engine, The heat taken from the source; and The work done by each engine. Assume each engine operates on the Carnot cyclearrow_forward
- A steam turbine operates at steady state with inlet conditions of P1 = 5 bar, T1 = 320°C. Steam leaves the turbine at a pressure of 1 bar. There is no significant heat transfer between the turbine and its surroundings, and kinetic and potential energy changes between inlet and exit are negligible. If the isentropic turbine efficiency is 75%, determine the work developed per unit mass of steam flowing through the turbine, in kJ/kgarrow_forwardYou are asked to design a unit to condense ammonia. The required condensation rate is 0.09kg/s. Saturated ammonia at 30 o C is passed over a vertical plate (10 cm high and 25 cm wide).The properties of ammonia at the saturation temperature of 30°C are hfg = 1144 ́10^3 J/kg andrv = 9.055 kg/m 3 . Use the properties of liquid ammonia at the film temperature of 20°C (Ts =10 o C):Pr = 1.463 rho_l= 610.2 kf/m^3 liquid viscosity= 1.519*10^-4 kg/ ms kinematic viscosity= 2.489*10^-7 m^2/s Cpl= 4745 J/kg C kl=0.4927 W/m Ca)Calculate the surface temperature required to achieve the desired condensation rate of 0.09 kg/s( should be 688 degrees C) b) Show that if you use a bigger vertical plate (2.5 m-wide and 0.8 m-height), the requiredsurface temperature would be now 20 o C. You may use all the properties given as an initialguess. No need to iterate to correct for Tf. c) What if you still want to use small plates because of the space constrains? One way to getaround this problem is to use small…arrow_forwardUsing the three moment theorem, how was A2 determined?arrow_forwardDraw the kinematic diagram of the following mechanismarrow_forward##### For the attached electropneumatic circuit, design where and how a counter should be attached so that a part is counted for each cyclearrow_forwardIf you have a spring mass damper system, given by m*x_double_dot + c*x_dot + kx = 0 where m, c, k (all positive scalars) are the mass, damper coefficient, and spring coefficient, respectively. x ∈ R represents the displacement of the mass. Let us then discuss the stability of the system by using Lyapunov stability theorem. Consider the system energy as a candidate Lyapunov function shown in the image. Discuss the positive definiteness of V (x, x_dot). Derive the Lyapunov rate of this system (i.e., V_dot ), and discuss the stability property of thesystem based on the information we gain from ̇V_dot .arrow_forwardIn class, two approaches—Theorems 1 and 2 below—are discussed to prove asymptotic stability of asystem when ̇V = 0. Show the asymptotic stability of the system given in Eq. (1) by applying Theorem 1. Show the asymptotic stability of the system given in Eq. (1) by applying Theorem 2.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY