College Physics:
11th Edition
ISBN: 9781305965515
Author: SERWAY, Raymond A.
Publisher: Brooks/Cole Pub Co
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 26.7, Problem 26.7QQ
(a)
To determine
To say true or false: Because a photon has zero mass, it does not exert a force on the mirror when it is reflected from a mirror.
(b)
To determine
To say true or false: Although the photon has energy, it cannot transfer any energy to the surface because it has zero mass.
(c)
To determine
To say true or false: The photon carries momentum and when it reflects off the mirror, it undergoes a change in momentum and exerts a force on the mirror.
(d)
To determine
To say true or false: Although the photon carries momentum its change in momentum is zero when it reflects from a mirror, so it cannot exert a force on the mirror.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A possible means of space flight is to place a perfectly reflecting aluminized sheet into orbit around the Earth and then use the light from the Sun to push this "solar sail." Suppose a sail of area A = 5.20 ✕ 105 m2 and mass m = 6,800 kg is placed in orbit facing the Sun. Ignore all gravitational effects and assume a solar intensity of 1,370 W/m2.
(d)
What If? If the solar sail were initially in Earth orbit at an altitude of 300 km, show that a sail of this mass density could not escape Earth's gravitational pull regardless of size. (Calculate the magnitude of the gravitational field in m/s2.)
m/s2
(e)
What would the mass density (in kg/m2) of the solar sail have to be for the solar sail to attain the same initial acceleration as that in part (b)?
kg/m2
The momentum of a photon having energy 1.00 X 10-17 J is ____________
a) 2.33 X 10-26 kg m/s
b) 3.33 X 10-26 kg m/s
c) 4.33 X 10-26 kg m/s
d) 5.33 X 10-26 kg m/s
Question:
The electronic structure of atoms and molecules may be investigated using photoelectron spectroscopy. An electron in a photoelectron spectrometer is accelerated from rest by a uniform electric field to a speed of 420 km s−1 in 10 µs. Determine the kinetic energy of the electron?
Chapter 26 Solutions
College Physics:
Ch. 26.3 - Prob. 26.1QQCh. 26.4 - Suppose youre an astronaut being paid according to...Ch. 26.4 - True or False: People traveling near the speed of...Ch. 26.4 - You are packing for a trip to another star, and on...Ch. 26.4 - You observe a locket moving away from you. (i)...Ch. 26.7 - Prob. 26.6QQCh. 26.7 - Prob. 26.7QQCh. 26 - Choose the option from each pair that makes the...Ch. 26 - Choose the option that makes the following...Ch. 26 - Choose the option that makes the following...
Ch. 26 - Choose the option from each pair that makes the...Ch. 26 - A spacecraft with the shape of a sphere of...Ch. 26 - What two speed measurements will two observers in...Ch. 26 - The speed of light in water is 2.30 108 m/s....Ch. 26 - With regard to reference frames, how does general...Ch. 26 - Give a physical argument that shows it is...Ch. 26 - It is said that Einstein, in his teenage years,...Ch. 26 - List some ways our day-to-day lives would change...Ch. 26 - Two identically constructed clocks are...Ch. 26 - Prob. 13CQCh. 26 - Imagine an astronaut on a trip to Sirius, which...Ch. 26 - Explain why, when defining the length of a rod, it...Ch. 26 - Prob. 16CQCh. 26 - The control panel on a spaceship contains a light...Ch. 26 - A spaceship moves past Earth with a speed of...Ch. 26 - If astronauts could travel at v = 0.950c, we on...Ch. 26 - a meterstick moving at 0.900c relative to the...Ch. 26 - The length of a moving spaceship is 28.0 m...Ch. 26 - An astronaut at rest on Earth has a heart rate of...Ch. 26 - The average lifetime of a pi meson in its own...Ch. 26 - An astronaut is traveling in a space vehicle that...Ch. 26 - A muon formed high in Earth's atmosphere travels...Ch. 26 - A star is 15.0 light-years (ly) from Earth. (a) At...Ch. 26 - The proper length of one spaceship is three times...Ch. 26 - A car traveling at 35.0 m/s takes 26.0 minutes to...Ch. 26 - A supertrain of proper length 1.00 102 m travels...Ch. 26 - A box is cubical with sides of proper lengths L1 =...Ch. 26 - Prob. 15PCh. 26 - Prob. 16PCh. 26 - Prob. 17PCh. 26 - Prob. 18PCh. 26 - An unstable particle at rest breaks up into two...Ch. 26 - Spaceship R is moving to the right at a speed of...Ch. 26 - An electron moves to the right with a speed of...Ch. 26 - A spaceship travels at 0.750c relative to Earth....Ch. 26 - A spaceship is moving away from Earth at 0.900c...Ch. 26 - Two identical spaceships with proper lengths of...Ch. 26 - Spaceship A moves away from Earth at a speed of...Ch. 26 - A pulsar is a stellar object that emits light in...Ch. 26 - A rocket moves with a velocity of 0.92c to the...Ch. 26 - A proton moves with a speed of 0.950c. Calculate...Ch. 26 - Protons in an accelerator at the Fermi National...Ch. 26 - Prob. 30PCh. 26 - Prob. 31PCh. 26 - Prob. 32PCh. 26 - A chain of nuclear reactions in the Suns core...Ch. 26 - An unstable particle with a mass equal to 3.34 ...Ch. 26 - Prob. 35PCh. 26 - Prob. 36PCh. 26 - Prob. 37APCh. 26 - Prob. 38APCh. 26 - Prob. 39APCh. 26 - A spring of force constant k is compressed by a...Ch. 26 - A star is 5.00 ly from the Earth. At what speed...Ch. 26 - An electron has a total energy equal to five times...Ch. 26 - An astronaut wishes to visit the Andromeda galaxy,...Ch. 26 - An alarm clock is set to sound in 10.0 h. At t =...Ch. 26 - Owen and Dina are at rest in frame S, which is...Ch. 26 - An observer in a coasting spacecraft moves toward...Ch. 26 - A spaceship of proper length 300. m takes 0.75 s...Ch. 26 - The cosmic rays of highest energy are protons that...Ch. 26 - Prob. 49APCh. 26 - Prob. 50APCh. 26 - The muon is an unstable particle that...Ch. 26 - Prob. 52APCh. 26 - The identical twins Speedo and Goslo join a...Ch. 26 - An interstellar space probe is launched from...Ch. 26 - An observer moving at a speed of 0.995c relative...Ch. 26 - An alien spaceship traveling 0.600c toward Earth...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The frequency of violet light is 7.5 x 1014 Hz. How much energy does a photon of violet light carry? (h = 6.626 x 10-34 J·s; 1 eV = 1.60 x 10-19 J) 5.02 x 10-22 J 4.97 x 10-19 J 2.36 x 10-19J 4.38 x 10-19 Jarrow_forward(a) A certain X-ray photon has a wavelength of 18 nm. Calculate the frequency (υ) of this type of radiation. The speed of light, c = 2.998 x 108 m/s (b) Do you expect the frequency of photon of blue color light to be greater than, less than, or the same as the frequency of this X-ray photon? Explain your reasoning.arrow_forwardWhat is the momentum of a photon that has a frequency of 4.2 x 10¹4 Hz? 8.25 x 10.28 kg-m/s 9.29 x 10.28 kg-m/s 7.34 x 10.28 kg-m/s 9.67 x 10.28 kg-m/sarrow_forward
- The energy of a photon is given by 6.7 × 10-15 J. What is the energy of the photon in the unit of eV?arrow_forwardA possible means of space flight is to place a perfectly reflecting aluminized sheet into orbit around the Earth and then use the light from the Sun to push this "solar sail." Suppose a sail of area A = 5.20 x 105 m² and mass m = 6,200 kg is placed in orbit facing the Sun. Ignore all gravitational effects and assume a solar intensity of 1,370 W/m². (a) What force (in N) is exerted on the sail? (Enter the magnitude.) N (b) What is the sail's acceleration? (Enter the magnitude in µm/s².) μm/s² (c) Assuming the acceleration calculated in part (b) remains constant, find the time interval (in days) required for the sail to reach the Moon, 3.84 x 108 m away, starting from rest at the Earth. days (d) What If? If the solar sail were initially in Earth orbit at an altitude of 340 km, show that a sail of this mass density could not escape Earth's gravitational pull regardless of size. (Calculate the magnitude of the gravitational field in m/s².) m/s² (e) What would the mass density (in kg/m²) of…arrow_forwardhow would you solve this? Light is emitted from the light source, reflects from mirror surface X to the plane mirror, and then to the position of surface Z. By the time the light moves from the X to Z position, mirror surface X will have moved to the position of mirror surface Z. The light then continues to the observer. The distances from the light source and the observer to the rotating mirrors are negligible. The distance from the rotating mirrors to the plane mirror is 35.0 km.If the mirrors are rotating at 480 rev/s, the speed of light calculated from the given information is a 7.44 10–9 m/s b 1.34 108 m/s c 2.98 10–8 m/s d 3.36 107 m/sarrow_forward
- What is the frequency in Hz of radiation required to supply a total energy of 1.12 x 102 J from 8.51 x 1027 photons?arrow_forwardA possible means of space flight is to place a perfectly reflecting aluminized sheet into orbit around the Earth and then use the light from the Sun to push this "solar sail." Suppose a sail of area A = 5.20 ✕ 105 m2 and mass m = 6,800 kg is placed in orbit facing the Sun. Ignore all gravitational effects and assume a solar intensity of 1,370 W/m2. (a) What force (in N) is exerted on the sail? (Enter the magnitude.) N (b) What is the sail's acceleration? (Enter the magnitude in µm/s2.) µm/s2 (c) Assuming the acceleration calculated in part (b) remains constant, find the time interval (in days) required for the sail to reach the Moon, 3.84 ✕ 108 m away, starting from rest at the Earth. days (d) What If? If the solar sail were initially in Earth orbit at an altitude of 300 km, show that a sail of this mass density could not escape Earth's gravitational pull regardless of size. (Calculate the magnitude of the gravitational field in m/s2.) m/s2 (e) What would the mass…arrow_forwardA possible means of space flight is to place a perfectly reflecting aluminized sheet into orbit around the Earth and then use the light from the Sun to push this "solar sail." Suppose a sail of area A = 6.90 x 105 m2 and mass m = 5,000 kg is placed in orbit facing the Sun. Ignore all gravitational effects and assume a solar intensity of 1,370 W/m?. (a) What force (in N) is exerted on the sail? (Enter the magnitude.) (b) What is the sail's acceleration? (Enter the magnitude in um/s2.) |um/s? (c) Assuming the acceleration calculated in part (b) remains constant, find the time interval (in days) required for the sail to reach the Moon, 3.84 x 10° m away, starting from rest at the Earth. days (d) What If? If the solar sail were initially in Earth orbit at an altitude of 400 km, show that a sail of this mass density could not escape Earth's gravitational pull regardless of size. (Calculate the magnitude of the gravitational field in m/s².) m/s2 (e) What would the mass density (in kg/m2) of…arrow_forward
- A possible means of space flight is to place a perfectly reflecting aluminized sheet into orbit around the Earth and then use the light from the Sun to push this "solar sail." Suppose a sail of area A = 6.40 ✕ 105 m2 and mass m = 4,900 kg is placed in orbit facing the Sun. Ignore all gravitational effects and assume a solar intensity of 1,370 W/m2. A) If the solar sail were initially in Earth orbit at an altitude of 360 km, show that a sail of this mass density could not escape Earth's gravitational pull regardless of size. (Calculate the magnitude of the gravitational field in m/s2.) B) What would the mass density (in kg/m2) of the solar sail have to be for the solar sail to attain the same initial acceleration of 1193 µm/s2.arrow_forwardAn observer in a coasting spacecraft moves toward a mirror at speed v relative to the reference frame labeled by S in Figure P26.46. The mirror is stationary with respect to S. A light pulse emitted by the spacecraft travels toward the mirror and is reflected back to the spacecraft. The spacecraft is a distance d from the mirror (as measured by observers in S) at the moment the light pulse leaves the spacecraft. What is the total travel time of the pulse as measured by observers in (a) the S frame and (b) the spacecraft? Figure P26.46arrow_forwardThe energy of a photon is given by 11 eV. What is the energy of the photon in the unit of J? Answer the value that goes into the blank: The energy of the photon is _____ × 10-17 Jarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning