Concept explainers
(a)
The radius of the first Bohr orbit of the hydrogen atom considering that the electron is bound to the proton by gravitational force (rather than electrostatic force)

Answer to Problem 94QAP
The radius of the first Bohr orbit of the hydrogen atom is given by the following expression
Explanation of Solution
Given:
It is assumed that the electron is bound to the proton by gravitational force (rather than electrostatic force) in hydrogen atom.
Formula used:
In this case the
where me and mp are electron and proton mass respectively, G is the gravitational constant.
According to Bohr quantization principle
So mathematically we can write it as
where, me is the mass of the electron, v and r are the velocity of the electron and radius of the electron orbit respectively, n is a positive integer.
Calculation:
From Eq. (1.1) we can write
Putting n =1 for the 1st Bohr orbit in Eq. (1.2) we get
Using the expression for v in Eq. (1.3) we get
Conclusion:
Therefore, the radius of the first Bohr orbit of the hydrogen atom is given by the following expression
(b)
The energy of the electron in the first Bohr orbit

Answer to Problem 94QAP
The energy expression for the electron in the 1st Bohr orbit is given by
Explanation of Solution
Given:
It is assumed that the electron is bound to the proton by gravitational force (rather than electrostatic force) in hydrogen atom.
Calculation:
Now substituting the expression for the radius of the 1st Bohr orbit r given by Eq. 1.5 in Eq. 1.4 we get the expression for the velocity of the electron as
So the kinetic energy of the electron is
The gravitational potential energy of the electron is given by
Now substituting the expression for r from Eq. 1.5 in Eq. 1.8 we get
Therefore the total energy of the electron in the 1st Bohr orbit is given by
Now using the expressions for Ek (Eq. 1.7) and Ep (Eq. 1.9) we get the total energy as
Conclusion:
Therefore, the energy expression for the electron in the 1st Bohr orbit is given by
Want to see more full solutions like this?
Chapter 26 Solutions
COLLEGE PHYSICS-ACHIEVE AC (1-TERM)
- Example Double pane windows have two panes of glass (n = 1.5), with a layer of air sandwiched between them. If light from outside enters the first pane at an angle of 25° from the surface normal, what angle does it enter the house at? ☑ 3 5arrow_forwardDid your experiment results in Data Table 3 verify, to within a reasonable experimental error, the condition of equilibrium of Equation 6: Στanti-clockwise = Στclockwise? Support your response with experimental data. What does this Σ mean? My results do not show they are equal to each other, what does this mean then, and what does the data show? Thanks!arrow_forwardmicro wave.arrow_forward
- Don't use ai to answer I will report you answer.. Find amplitude?arrow_forwardkerjakanarrow_forwardAn object is placed 37.4cm in front of a diverging lens with a focal length of 18.1 cm. Please provide your answers in units of cm if necessary. bookmark_border1.0p3a Find the image distance. Answer Updated 6 days ago Show feedback bookmark_border1.0p3b Is the image real or virtual? Real Virtual Updated 6 days ago Show feedback bookmark_border1.0p3c Suppose the object is brought to a distance of 10.3 cm in front of the lens. Where is the image now with respect to its previous location? (Note: Ensure the sign convention you use is consistent by treating all image distances on the object side of the lens as negative.) Answer Updated 7 minutes ago Show feedback bookmark_border1.0p3d How has the height of the image changed if the object is 84.2 cm tall? Answerarrow_forward
- n object is placed 37.4cm in front of a diverging lens with a focal length of 18.1 cm. Please provide your answers in units of cm if necessary. bookmark_border1.0p3a Find the image distance. Answer Updated 6 days ago Show feedback bookmark_border1.0p3b Is the image real or virtual? Real Virtual Updated 6 days ago Show feedback bookmark_border1.0p3c Suppose the object is brought to a distance of 10.3 cm in front of the lens. Where is the image now with respect to its previous location? (Note: Ensure the sign convention you use is consistent by treating all image distances on the object side of the lens as negative.) Answer Updated just now Show feedback bookmark_border1.0p3d How has the height of the image changed if the object is 84.2 cm tall? Answerarrow_forwardCan you draw a FBD and KD please!arrow_forwardIf a 120- volt circuit feeds four 40-watt fluorescent lamps, what current (in amps) is drawn if the power factor is 0.912 0.33 0.68 1.21 3.3arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





