Concept explainers
(a)
Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is
Answer to Problem 55QAP
Wavelength of the Compton scattered photon is 0.140 nm and the kinetic energy of the scattered electron is 0 if the scattering angle is
Explanation of Solution
Given:
Initial wavelength
Formula used:
According to Compton scattering the change in wavelength of the incident photon is given by
Now the energy of the scattered photon is
Kinetic energy of the scattered electron is given by
Calculation:
For
So,
And using the value of
K = 0.
Conclusion:
So the wavelength of the Compton scattered photon is 0.140 nm and the kinetic energy of the scattered electron is 0
(b)
Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is
Answer to Problem 55QAP
Wavelength of the Compton scattered photon is 0.140325 nm and the kinetic energy of the scattered electron is 20.5 eV
Explanation of Solution
Given:
Initial wavelength
Formula used:
According to Compton scattering the change in wavelength of the incident photon is given by
Now the energy of the scattered photon is
Kinetic energy of the scattered electron is given by
Calculation:
For
Now using the values of
[Above we have used 1 nm = 10-9 m and
Conclusion:
So the wavelength of the Compton scattered photon is 0.140325 nm and the kinetic energy of the scattered electron is 20.5 eV.
(c)
Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is
Answer to Problem 55QAP
Wavelength of the Compton scattered photon is 0.140712 nm and the kinetic energy of the scattered electron is 44.9 eV
Explanation of Solution
Given:
Initial wavelength
Formula used:
According to Compton scattering the change in wavelength of the incident photon is given by
Now the energy of the scattered photon is
Kinetic energy of the scattered electron is given by,
Calculation:
For
Now using the values of
Conclusion:
Wavelength of the Compton scattered photon is 0.140712 nm and the kinetic energy of the scattered electron is 44.9 eV
(d)
Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is
Answer to Problem 55QAP
Wavelength of the Compton scattered photon is 0.141215 nm and the kinetic energy of the scattered electron is 75.32 eV if the scattering angle is
Explanation of Solution
Given:
Initial wavelength
Formula used:
According to Compton scattering the change in wavelength of the incident photon is given by
Now the energy of the scattered photon is
Kinetic energy of the scattered electron is given by,
Calculation:
For
Now using the values of
Conclusion:
Wavelength of the Compton scattered photon is 0.141215 nm and the kinetic energy of the scattered electron is 75.32 eV
(e)
Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is
Answer to Problem 55QAP
Wavelength of the Compton scattered photon is 0.14243 nm and the kinetic energy of the scattered electron is 151.32 eV
Explanation of Solution
Given:
Initial wavelength
Formula used:
According to Compton scattering the change in wavelength of the incident photon is given by
Now the energy of the scattered photon is
Kinetic energy of the scattered electron is given by,
Calculation:
For θ = 900 using Eq. (1.1)
Now using the values of
Conclusion:
Wavelength of the Compton scattered photon is 0.14243 nm and the kinetic energy of the scattered electron is 151.32 eV.
(f)
Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is
Answer to Problem 55QAP
Wavelength of the Compton scattered photon is 0.14486 nm and the kinetic energy of the scattered electron is 297.43 eV
Explanation of Solution
Given:
Initial wavelength
Formula used:
According to Compton scattering the change in wavelength of the incident photon is given by
Now the energy of the scattered photon is
Kinetic energy of the scattered electron is given by,
Calculation:
For θ = 1800 using Eq. (1.1)
Now using the values of
Conclusion:
Wavelength of the Compton scattered photon is 0.14486 nm and the kinetic energy of the scattered electron is 297.43 eV
Want to see more full solutions like this?
Chapter 26 Solutions
COLLEGE PHYSICS-ACHIEVE AC (1-TERM)
- No chatgpt pls will upvotearrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward་ The position of a particle is described by r = (300e 0.5t) mm and 0 = (0.3t²) rad, where t is in seconds. Part A Determine the magnitude of the particle's velocity at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. v = Value Submit Request Answer Part B ? Units Determine the magnitude of the particle's acceleration at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. a = Value A ? Unitsarrow_forward
- Solve and answer the question correctly please. Thank you!!arrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forwardA spiral transition curve is used on railroads to connect a straight portion of the track with a curved portion. (Figure 1) Part A v = v₁ft/s 600 ft y = (106) x³ If the spiral is defined by the equation y = (106)³, where x and y are in feet, determine the magnitude of the acceleration of a train engine moving with a constant speed of v₁ = 30 ft/s when it is at point x = 600 ft. Express your answer to three significant figures and include the appropriate units. ? a = Value Unitsarrow_forward
- When the motorcyclist is at A, he increases his speed along the vertical circular path at the rate of = (0.3t) ft/s², where t is in seconds. Take p = 360 ft. (Figure 1) Part A 60° Ρ B If he starts from rest at A, determine the magnitude of his velocity when he reaches B. Express your answer to three significant figures and include the appropriate units. v = Value Submit Request Answer ་ Part B ? Units If he starts from rest at A, determine the magnitude of his acceleration when he reaches B. Express your answer to three significant figures and include the appropriate units. 11 ? a = Value Unitsarrow_forwardThe car starts from rest at s = 0 and increases its speed at a₁ = 7 m/s². (Figure 1) Part A = 40 m Determine the time when the magnitude of acceleration becomes 20 m/s². Express your answer to three significant figures and include the appropriate units. ? t = Value Units Part B At what position s does this occur? Express your answer to three significant figures and include the appropriate units. s = Value Submit Request Answer ? Unitsarrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning