Concept explainers
(a)
The

Answer to Problem 77QAP
Mathematically the angular momentum of an electron can be written as
Explanation of Solution
Given:
Hydrogen atom model according to Bohr quantization principle
Calculation:
According to Bohr quantization principle angular momentum of an electron in an atom is an integral multiple of
So mathematically we can write it as,
(1)
where, m is the mass of the electron, vnis the velocity on the nthorbit, n is a positive integer.
Conclusion:
So mathematically the angular momentum of an electron can be written as
(b)
The radius of the electron orbit in hydrogen atom

Answer to Problem 77QAP
The radius of the electron orbit in hydrogen atom is given by
Explanation of Solution
Given:
Hydrogen atom model according to Bohr quantization principle
Calculation:
Electrostatic force between the orbiting electron and proton supplies the required
(2)
where
(3)
Now using equation (1) in equation (3) we can write,
(4)
Conclusion:
So, the radius of the nthelectron orbit in hydrogen atom is given by
(c)
The kinetic energy of an electron in hydrogen atom

Answer to Problem 77QAP
The kinetic energy of an electron in hydrogen atom is given by
Explanation of Solution
Given:
Hydrogen atom model according to Bohr quantization principle
Calculation:
Kinetic energy of the electron is given by
(5)
Now substituting the expression for rnin equation (1) we obtain
(6)
Now substituting the value of vnin equation (5) we obtain
(7)
Conclusion:
So, the kinetic energy of an electron in hydrogen atom is given by
(d)
The total energy of an electron in hydrogen atom

Answer to Problem 77QAP
The total energy of an electron in hydrogen atom is given by
Explanation of Solution
Given:
Hydrogen atom model according to Bohr quantization principle
Calculation:
Total energy of the electron is given by the sum of kinetic and potential energy
(8)
Knexpression we have already derived in part (c). Now we want to derive an expression for the potential energy Epwhich is the electro static energy between proton and the orbiting electron. So
(9)
Now substituting the value of rnusing equation (4) in equation (9) we get
(10)
Now putting equation (7) and (10) in equation (8) we get
Conclusion:
So, the total energy of an electron in hydrogen atom is given by
(e)
The speed of an electron in hydrogen atom

Answer to Problem 77QAP
The speed of an electron in hydrogen atom is given by
Explanation of Solution
Given:
Hydrogen atom model according to Bohr quantization principle
Calculation:
We have already derived the expression for speed of an electron in part (c) equation (6). The expression for speed in the nth orbit of the electron is given by
Conclusion:
So, the speed of an electron in hydrogen atom is given by
Want to see more full solutions like this?
Chapter 26 Solutions
COLLEGE PHYSICS,VOLUME 1
- please answer this asap!!!!arrow_forwardRT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unitarrow_forward7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forward
- ганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)arrow_forwardA small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?arrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





