Concept explainers
(a)
The

Answer to Problem 77QAP
Mathematically the angular momentum of an electron can be written as
Explanation of Solution
Given:
Hydrogen atom model according to Bohr quantization principle
Calculation:
According to Bohr quantization principle angular momentum of an electron in an atom is an integral multiple of
So mathematically we can write it as,
(1)
where, m is the mass of the electron, vnis the velocity on the nthorbit, n is a positive integer.
Conclusion:
So mathematically the angular momentum of an electron can be written as
(b)
The radius of the electron orbit in hydrogen atom

Answer to Problem 77QAP
The radius of the electron orbit in hydrogen atom is given by
Explanation of Solution
Given:
Hydrogen atom model according to Bohr quantization principle
Calculation:
Electrostatic force between the orbiting electron and proton supplies the required
(2)
where
(3)
Now using equation (1) in equation (3) we can write,
(4)
Conclusion:
So, the radius of the nthelectron orbit in hydrogen atom is given by
(c)
The kinetic energy of an electron in hydrogen atom

Answer to Problem 77QAP
The kinetic energy of an electron in hydrogen atom is given by
Explanation of Solution
Given:
Hydrogen atom model according to Bohr quantization principle
Calculation:
Kinetic energy of the electron is given by
(5)
Now substituting the expression for rnin equation (1) we obtain
(6)
Now substituting the value of vnin equation (5) we obtain
(7)
Conclusion:
So, the kinetic energy of an electron in hydrogen atom is given by
(d)
The total energy of an electron in hydrogen atom

Answer to Problem 77QAP
The total energy of an electron in hydrogen atom is given by
Explanation of Solution
Given:
Hydrogen atom model according to Bohr quantization principle
Calculation:
Total energy of the electron is given by the sum of kinetic and potential energy
(8)
Knexpression we have already derived in part (c). Now we want to derive an expression for the potential energy Epwhich is the electro static energy between proton and the orbiting electron. So
(9)
Now substituting the value of rnusing equation (4) in equation (9) we get
(10)
Now putting equation (7) and (10) in equation (8) we get
Conclusion:
So, the total energy of an electron in hydrogen atom is given by
(e)
The speed of an electron in hydrogen atom

Answer to Problem 77QAP
The speed of an electron in hydrogen atom is given by
Explanation of Solution
Given:
Hydrogen atom model according to Bohr quantization principle
Calculation:
We have already derived the expression for speed of an electron in part (c) equation (6). The expression for speed in the nth orbit of the electron is given by
Conclusion:
So, the speed of an electron in hydrogen atom is given by
Want to see more full solutions like this?
Chapter 26 Solutions
COLLEGE PHYSICS,VOLUME 1
- answer the question symbolically until you have to plug in numbers. show all work please.arrow_forwardWhat is the direction of the magnetic force on a NEGATIVE CHARGE that moves as shown in each of the six cases?arrow_forwardHi! I need help with these calculations for part i and part k for a physics Diffraction Lab. We used a slit width 0.4 mm to measure our pattern.arrow_forward
- Examine the data and % error values in Data Table 3 where the angular displacement of the simple pendulum decreased but the mass of the pendulum bob and the length of the pendulum remained constant. Describe whether or not your data shows that the period of the pendulum depends on the angular displacement of the pendulum bob, to within a reasonable percent error.arrow_forwardIn addition to the anyalysis of the graph, show mathematically that the slope of that line is 2π/√g . Using the slope of your line calculate the value of g and compare it to 9.8.arrow_forwardAn object is placed 24.1 cm to the left of a diverging lens (f = -6.51 cm). A concave mirror (f= 14.8 cm) is placed 30.2 cm to the right of the lens to form an image of the first image formed by the lens. Find the final image distance, measured relative to the mirror. (b) Is the final image real or virtual? (c) Is the final image upright or inverted with respect to the original object?arrow_forward
- Concept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forwardPls help ASAParrow_forwardPls help ASAParrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





