Concept explainers
(a)
Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is
Answer to Problem 55QAP
Wavelength of the Compton scattered photon is 0.140 nm and the kinetic energy of the scattered electron is 0 if the scattering angle is
Explanation of Solution
Given:
Initial wavelength
Formula used:
According to Compton scattering the change in wavelength of the incident photon is given by
Now the energy of the scattered photon is
Kinetic energy of the scattered electron is given by
Calculation:
For
So,
And using the value of
K = 0.
Conclusion:
So the wavelength of the Compton scattered photon is 0.140 nm and the kinetic energy of the scattered electron is 0
(b)
Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is
Answer to Problem 55QAP
Wavelength of the Compton scattered photon is 0.140325 nm and the kinetic energy of the scattered electron is 20.5 eV
Explanation of Solution
Given:
Initial wavelength
Formula used:
According to Compton scattering the change in wavelength of the incident photon is given by
Now the energy of the scattered photon is
Kinetic energy of the scattered electron is given by
Calculation:
For
Now using the values of
[Above we have used 1 nm = 10-9 m and
Conclusion:
So the wavelength of the Compton scattered photon is 0.140325 nm and the kinetic energy of the scattered electron is 20.5 eV.
(c)
Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is
Answer to Problem 55QAP
Wavelength of the Compton scattered photon is 0.140712 nm and the kinetic energy of the scattered electron is 44.9 eV
Explanation of Solution
Given:
Initial wavelength
Formula used:
According to Compton scattering the change in wavelength of the incident photon is given by
Now the energy of the scattered photon is
Kinetic energy of the scattered electron is given by,
Calculation:
For
Now using the values of
Conclusion:
Wavelength of the Compton scattered photon is 0.140712 nm and the kinetic energy of the scattered electron is 44.9 eV
(d)
Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is
Answer to Problem 55QAP
Wavelength of the Compton scattered photon is 0.141215 nm and the kinetic energy of the scattered electron is 75.32 eV if the scattering angle is
Explanation of Solution
Given:
Initial wavelength
Formula used:
According to Compton scattering the change in wavelength of the incident photon is given by
Now the energy of the scattered photon is
Kinetic energy of the scattered electron is given by,
Calculation:
For
Now using the values of
Conclusion:
Wavelength of the Compton scattered photon is 0.141215 nm and the kinetic energy of the scattered electron is 75.32 eV
(e)
Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is
Answer to Problem 55QAP
Wavelength of the Compton scattered photon is 0.14243 nm and the kinetic energy of the scattered electron is 151.32 eV
Explanation of Solution
Given:
Initial wavelength
Formula used:
According to Compton scattering the change in wavelength of the incident photon is given by
Now the energy of the scattered photon is
Kinetic energy of the scattered electron is given by,
Calculation:
For θ = 900 using Eq. (1.1)
Now using the values of
Conclusion:
Wavelength of the Compton scattered photon is 0.14243 nm and the kinetic energy of the scattered electron is 151.32 eV.
(f)
Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is
Answer to Problem 55QAP
Wavelength of the Compton scattered photon is 0.14486 nm and the kinetic energy of the scattered electron is 297.43 eV
Explanation of Solution
Given:
Initial wavelength
Formula used:
According to Compton scattering the change in wavelength of the incident photon is given by
Now the energy of the scattered photon is
Kinetic energy of the scattered electron is given by,
Calculation:
For θ = 1800 using Eq. (1.1)
Now using the values of
Conclusion:
Wavelength of the Compton scattered photon is 0.14486 nm and the kinetic energy of the scattered electron is 297.43 eV
Want to see more full solutions like this?
Chapter 26 Solutions
COLLEGE PHYSICS,VOLUME 1
- The particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forwardThe 10-lb weight is supported by the cord AC and roller and by the spring that has a stiffness of k = 10 lb/in. and an unstretched length of 12 in. as shown in. Part A Determine the distance d to maintain equilibrium. Express your answer in inches to three significant figures. 節 ΕΠΙ ΑΣΦ d = *k J vec 5 t 0 ? d C A in. 12 in. Barrow_forwardThe members of a truss are connected to the gusset plate as shown in . The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F = Value Submit Request Answer Part B 0 ? Units Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. ? T₂ = Value Units T₁ Carrow_forward
- 6. 6. There are 1000 turns on the primary side of a transformer and 200 turns on thesecondary side. If 440 V are supplied to the primary winding, what is the voltageinduced in the secondary winding? Is this a step-up or step-down transformer? 7. 80 V are supplied to the primary winding of a transformer that has 50 turns. If thesecondary side has 50,000 turns, what is the voltage induced on the secondary side?Is this a step-up or step-down transformer? 8. There are 50 turns on the primary side of a transformer and 500 turns on thesecondary side. The current through the primary winding is 6 A. What is the turnsratio of this transformer? What is the current, in milliamps, through the secondarywinding?9. The current through the primary winding on a transformer is 5 A. There are 1000turns on the primary winding and 20 turns on the secondary winding. What is theturns ratio of this transformer? What is the current, in amps, through the secondarywinding?arrow_forwardNo chatgpt plsarrow_forwardWhat is the current, in amps, across a conductor that has a resistance of10 Ω and a voltage of 20 V? 2. A conductor draws a current of 100 A and a resistance of 5 Ω. What is thevoltageacross the conductor? 3. What is the resistance, in ohm’s, of a conductor that has a voltage of 80 kVand acurrent of 200 mA? 4. An x-ray imaging system that draws a current of 90 A is supplied with 220V. What is the power consumed? 5. An x-ray is produced using 800 mA and 100 kV. What is the powerconsumed in kilowatts?arrow_forward
- ՍՈՈՒ XVirginia Western Community Coll x P Course Home X + astering.pearson.com/?courseld=13289599#/ Figure y (mm) x=0x = 0.0900 m All ✓ Correct For either the time for one full cycle is 0.040 s; this is the period. Part C - ON You are told that the two points x = 0 and x = 0.0900 m are within one wavelength of each other. If the wave is moving in the +x-direction, determine the wavelength. Express your answer to two significant figures and include the appropriate units. 0 t(s) λ = Value m 0.01 0.03 0.05 0.07 Copyright © 2025 Pearson Education Inc. All rights reserved. 日 F3 F4 F5 1775 % F6 F7 B F8 Submit Previous Answers Request Answer ? × Incorrect; Try Again; 3 attempts remaining | Terms of Use | Privacy Policy | Permissions | Contact Us | Cookie Settings 28°F Clear 4 9:23 PM 1/20/2025 F9 prt sc F10 home F11 end F12 insert delete 6 7 29 & * ( 8 9 0 t = back Οarrow_forwardPart C Find the height yi from which the rock was launched. Express your answer in meters to three significant figures. Learning Goal: To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration. PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model. VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ. SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…arrow_forwardPhys 25arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning