Concept explainers
(a)
Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is

Answer to Problem 55QAP
Wavelength of the Compton scattered photon is 0.140 nm and the kinetic energy of the scattered electron is 0 if the scattering angle is
Explanation of Solution
Given:
Initial wavelength
Formula used:
According to Compton scattering the change in wavelength of the incident photon is given by
Now the energy of the scattered photon is
Kinetic energy of the scattered electron is given by
Calculation:
For
So,
And using the value of
K = 0.
Conclusion:
So the wavelength of the Compton scattered photon is 0.140 nm and the kinetic energy of the scattered electron is 0
(b)
Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is

Answer to Problem 55QAP
Wavelength of the Compton scattered photon is 0.140325 nm and the kinetic energy of the scattered electron is 20.5 eV
Explanation of Solution
Given:
Initial wavelength
Formula used:
According to Compton scattering the change in wavelength of the incident photon is given by
Now the energy of the scattered photon is
Kinetic energy of the scattered electron is given by
Calculation:
For
Now using the values of
[Above we have used 1 nm = 10-9 m and
Conclusion:
So the wavelength of the Compton scattered photon is 0.140325 nm and the kinetic energy of the scattered electron is 20.5 eV.
(c)
Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is

Answer to Problem 55QAP
Wavelength of the Compton scattered photon is 0.140712 nm and the kinetic energy of the scattered electron is 44.9 eV
Explanation of Solution
Given:
Initial wavelength
Formula used:
According to Compton scattering the change in wavelength of the incident photon is given by
Now the energy of the scattered photon is
Kinetic energy of the scattered electron is given by,
Calculation:
For
Now using the values of
Conclusion:
Wavelength of the Compton scattered photon is 0.140712 nm and the kinetic energy of the scattered electron is 44.9 eV
(d)
Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is

Answer to Problem 55QAP
Wavelength of the Compton scattered photon is 0.141215 nm and the kinetic energy of the scattered electron is 75.32 eV if the scattering angle is
Explanation of Solution
Given:
Initial wavelength
Formula used:
According to Compton scattering the change in wavelength of the incident photon is given by
Now the energy of the scattered photon is
Kinetic energy of the scattered electron is given by,
Calculation:
For
Now using the values of
Conclusion:
Wavelength of the Compton scattered photon is 0.141215 nm and the kinetic energy of the scattered electron is 75.32 eV
(e)
Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is

Answer to Problem 55QAP
Wavelength of the Compton scattered photon is 0.14243 nm and the kinetic energy of the scattered electron is 151.32 eV
Explanation of Solution
Given:
Initial wavelength
Formula used:
According to Compton scattering the change in wavelength of the incident photon is given by
Now the energy of the scattered photon is
Kinetic energy of the scattered electron is given by,
Calculation:
For θ = 900 using Eq. (1.1)
Now using the values of
Conclusion:
Wavelength of the Compton scattered photon is 0.14243 nm and the kinetic energy of the scattered electron is 151.32 eV.
(f)
Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is

Answer to Problem 55QAP
Wavelength of the Compton scattered photon is 0.14486 nm and the kinetic energy of the scattered electron is 297.43 eV
Explanation of Solution
Given:
Initial wavelength
Formula used:
According to Compton scattering the change in wavelength of the incident photon is given by
Now the energy of the scattered photon is
Kinetic energy of the scattered electron is given by,
Calculation:
For θ = 1800 using Eq. (1.1)
Now using the values of
Conclusion:
Wavelength of the Compton scattered photon is 0.14486 nm and the kinetic energy of the scattered electron is 297.43 eV
Want to see more full solutions like this?
Chapter 26 Solutions
COLLEGE PHYSICS,VOLUME 1
- In the movie Fast X, a 10100 kg round bomb is set rolling in Rome. The bomb gets up to 17.6 m/s. To try to stop the bomb, the protagonist Dom swings the counterweight of a crane, which has a mass of 354000 kg into the bomb at 3.61 m/s in the opposite direction. Directly after the collision the crane counterweight continues in the same direction it was going at 2.13 m/s. What is the velocity (magnitude and direction) of the bomb right after the collision?arrow_forwardDon't use aiarrow_forwardMake sure to draw a sketch with scale pleasearrow_forward
- Make sure to draw a sketch with scalearrow_forwardUltimate Byleth and Little Mac fight. Little Mac, who is a boxer, dashes forward at 26.6 m/s, fist first. Byleth moves in the opposite direction at 3.79 m/s, where they collide with Little Mac’s fist. After the punch Byleth flies backwards at 11.1 m/s. How fast, and in what direction, is Little Mac now moving? Little Mac has a mass of 48.5 kg and Byleth has a mass of 72.0 kg.arrow_forwardMake sure to draw a sketch with scale as wellarrow_forward
- Make sure to draw a sketch with scale pleasearrow_forwardKirby jumps towards his enemy/ally, Meta Knight, at 2.06 m/s while Meta Knight glides in the opposite direction (toward Kirby) at 5.06 m/s. Kirby then begins to inhale, swallowing Meta Knight. What is Kirby/Meta Knight’s velocity immediately after being swallowed? Please put the magnitude of the velocity and then mark direction using dropdown menu. Kirby has a mass of 0.283 kg and Meta Knight has a mass of 0.538 kg.arrow_forwardNo Aiarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





