Concept explainers
(a)
Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is

Answer to Problem 55QAP
Wavelength of the Compton scattered photon is 0.140 nm and the kinetic energy of the scattered electron is 0 if the scattering angle is
Explanation of Solution
Given:
Initial wavelength
Formula used:
According to Compton scattering the change in wavelength of the incident photon is given by
Now the energy of the scattered photon is
Kinetic energy of the scattered electron is given by
Calculation:
For
So,
And using the value of
K = 0.
Conclusion:
So the wavelength of the Compton scattered photon is 0.140 nm and the kinetic energy of the scattered electron is 0
(b)
Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is

Answer to Problem 55QAP
Wavelength of the Compton scattered photon is 0.140325 nm and the kinetic energy of the scattered electron is 20.5 eV
Explanation of Solution
Given:
Initial wavelength
Formula used:
According to Compton scattering the change in wavelength of the incident photon is given by
Now the energy of the scattered photon is
Kinetic energy of the scattered electron is given by
Calculation:
For
Now using the values of
[Above we have used 1 nm = 10-9 m and
Conclusion:
So the wavelength of the Compton scattered photon is 0.140325 nm and the kinetic energy of the scattered electron is 20.5 eV.
(c)
Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is

Answer to Problem 55QAP
Wavelength of the Compton scattered photon is 0.140712 nm and the kinetic energy of the scattered electron is 44.9 eV
Explanation of Solution
Given:
Initial wavelength
Formula used:
According to Compton scattering the change in wavelength of the incident photon is given by
Now the energy of the scattered photon is
Kinetic energy of the scattered electron is given by,
Calculation:
For
Now using the values of
Conclusion:
Wavelength of the Compton scattered photon is 0.140712 nm and the kinetic energy of the scattered electron is 44.9 eV
(d)
Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is

Answer to Problem 55QAP
Wavelength of the Compton scattered photon is 0.141215 nm and the kinetic energy of the scattered electron is 75.32 eV if the scattering angle is
Explanation of Solution
Given:
Initial wavelength
Formula used:
According to Compton scattering the change in wavelength of the incident photon is given by
Now the energy of the scattered photon is
Kinetic energy of the scattered electron is given by,
Calculation:
For
Now using the values of
Conclusion:
Wavelength of the Compton scattered photon is 0.141215 nm and the kinetic energy of the scattered electron is 75.32 eV
(e)
Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is

Answer to Problem 55QAP
Wavelength of the Compton scattered photon is 0.14243 nm and the kinetic energy of the scattered electron is 151.32 eV
Explanation of Solution
Given:
Initial wavelength
Formula used:
According to Compton scattering the change in wavelength of the incident photon is given by
Now the energy of the scattered photon is
Kinetic energy of the scattered electron is given by,
Calculation:
For θ = 900 using Eq. (1.1)
Now using the values of
Conclusion:
Wavelength of the Compton scattered photon is 0.14243 nm and the kinetic energy of the scattered electron is 151.32 eV.
(f)
Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is

Answer to Problem 55QAP
Wavelength of the Compton scattered photon is 0.14486 nm and the kinetic energy of the scattered electron is 297.43 eV
Explanation of Solution
Given:
Initial wavelength
Formula used:
According to Compton scattering the change in wavelength of the incident photon is given by
Now the energy of the scattered photon is
Kinetic energy of the scattered electron is given by,
Calculation:
For θ = 1800 using Eq. (1.1)
Now using the values of
Conclusion:
Wavelength of the Compton scattered photon is 0.14486 nm and the kinetic energy of the scattered electron is 297.43 eV
Want to see more full solutions like this?
Chapter 26 Solutions
COLLEGE PHYSICS,VOLUME 1
- Hi Expert in Physics, I have uploaded pictures with respect to some physics equations. Could please name all Greek alphabet and their English name?arrow_forward81 SSM Figure 29-84 shows a cross section of an infinite conducting sheet carrying a current per unit x-length of 2; the current emerges perpendicularly out of the page. (a) Use the Biot-Savart law and symmetry to show that for all points B P P. BD P' Figure 29-84 Problem 81. x P above the sheet and all points P' below it, the magnetic field B is parallel to the sheet and directed as shown. (b) Use Ampere's law to prove that B = ½µλ at all points P and P'.arrow_forwardWhat All equations of Ountum physics?arrow_forward
- Please rewrite the rules of Quantum mechanics?arrow_forwardSuppose there are two transformers between your house and the high-voltage transmission line that distributes the power. In addition, assume your house is the only one using electric power. At a substation the primary of a step-down transformer (turns ratio = 1:23) receives the voltage from the high-voltage transmission line. Because of your usage, a current of 51.1 mA exists in the primary of the transformer. The secondary is connected to the primary of another step-down transformer (turns ratio = 1:36) somewhere near your house, perhaps up on a telephone pole. The secondary of this transformer delivers a 240-V emf to your house. How much power is your house using? Remember that the current and voltage given in this problem are rms values.arrow_forwardThe human eye is most sensitive to light having a frequency of about 5.5 × 1014 Hz, which is in the yellow-green region of the electromagnetic spectrum. How many wavelengths of this light can fit across a distance of 2.2 cm?arrow_forward
- A one-dimensional harmonic oscillator of mass m and angular frequency w is in a heat bath of temperature T. What is the root mean square of the displacement of the oscillator? (In the expressions below k is the Boltzmann constant.) Select one: ○ (KT/mw²)1/2 ○ (KT/mw²)-1/2 ○ kT/w O (KT/mw²) 1/2In(2)arrow_forwardTwo polarizers are placed on top of each other so that their transmission axes coincide. If unpolarized light falls on the system, the transmitted intensity is lo. What is the transmitted intensity if one of the polarizers is rotated by 30 degrees? Select one: ○ 10/4 ○ 0.866 lo ○ 310/4 01/2 10/2arrow_forwardBefore attempting this problem, review Conceptual Example 7. The intensity of the light that reaches the photocell in the drawing is 160 W/m², when 0 = 18°. What would be the intensity reaching the photocell if the analyzer were removed from the setup, everything else remaining the same? Light Photocell Polarizer Insert Analyzerarrow_forward
- The lifetime of a muon in its rest frame is 2.2 microseconds. What is the lifetime of the muon measured in the laboratory frame, where the muon's kinetic energy is 53 MeV? It is known that the rest energy of the muon is 106 MeV. Select one: O 4.4 microseconds O 6.6 microseconds O 3.3 microseconds O 1.1 microsecondsarrow_forwardThe Lagrangian of a particle performing harmonic oscil- lations is written in the form L = ax² - Bx² - yx, where a, and are constants. What is the angular frequency of oscillations? A) √2/a B) √(+2a)/B C) √√Ba D) B/αarrow_forwardThe mean temperature of the Earth is T=287 K. What would the new mean temperature T' be if the mean distance between the Earth and the Sun was increased by 2%? Select one: ○ 293 K O 281 K ○ 273 K 284 Karrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





