![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781429281843/9781429281843_largeCoverImage.jpg)
Concept explainers
(a)
Whether the magnetic moment of the coil make angle with the unit vector
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 52P
The coil makes an angle of
Explanation of Solution
Given:
The given diagram is shown in Figure 1
Figure 1
Calculation:
The angel that the coil makes with the y axis is
In the Figure 1, the angel that the coil makes with y axis is
Conclusion:
Therefore, the coil makes an angle of
(b)
The expression for
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 52P
The expression for
Explanation of Solution
Given:
The angle
Formula:
The normal drawn to the coil in the plane of positive
Calculation:
The value of
Conclusion:
Therefore, the expression for
(c)
The magnetic moment of the coil.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 52P
The value of the magnetic field is
Explanation of Solution
Given:
The length of the coil
The width of the coil
The current
The magnetic field density
Formula:
The expression for the area of the loop is given by,
The expression to determine the value of
The expression to determine the magnetic moment of the coil is given by,
Calculation:
The area of the loop is calculated as,
The value of
The magnetic moment of the coil is calculated as,
Conclusion:
Therefore, the value of the magnetic moment is
(d)
The torque on the coil when the magnetic field is constant.
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 52P
The torque on the coil is
Explanation of Solution
Formula:
The expression for the torque on the coil is given by,
Calculation:
The value of the torque on the coil is calculated as,
Conclusion:
Therefore, the torque on the coil is
(e)
The potential energy of the coil.
(e)
![Check Mark](/static/check-mark.png)
Answer to Problem 52P
The potential energy of the coil is
Explanation of Solution
Formula:
The expression to determine the potential energy of the coil is given by,
Calculation:
The potential energy of the coil is calculated as,
Conclusion:
Therefore, the potential energy of the coil is
Want to see more full solutions like this?
Chapter 26 Solutions
Physics for Scientists and Engineers
- You hold a spherical salad bowl 85 cm in front of your face with the bottom of the bowl facing you. The salad bowl is made of polished metal with a 40 cm radius of curvature. Where is the image of your 2.0 cm tall nose located? What is image's size, orientation, and nature. I keep getting the answer -26.2, but it keeps saying it is wrong. I just want to know what i'm doing wrong.arrow_forwardA converging lens with a focal length of 6.70 cm forms an image of a 4.60 mm tall real object that is to the left of the lens. The image is 1.50 cm tall and erect. Where are the object and image located? Is the image real or virtual? Please show all stepsarrow_forwardNo chatgpt pls will upvotearrow_forward
- need help part earrow_forwardCritical damping is the case where the mass never actually crosses over equilibrium position, but reaches equilibrium as fast as possible. Experiment with changing c to find the critical damping constant. Use the same initial conditions as in the last problem. Zoom in a bit to make sure you don't allow any oscillations to take place - even small ones.arrow_forwardNASA's KC-135 Reduced Gravity Research aircraft, affectionately known as the "Vomit Comet," is used in training astronauts and testing equipment for microgravity environments. During a typical mission, the aircraft makes approximately 30 to 40 parabolic arcs. During each arc, the aircraft and objects inside it are in free-fall, and passengers float freely in apparent "weightlessness." The figure below shows the altitude of the aircraft during a typical mission. It climbs from 24,000 ft to 30,850 ft, where it begins a parabolic arc with a velocity of 155 m/s at 45.0° nose-high and exits with velocity 155 m/s at 45.0° nose-low. 31 000 45° nose high 45° nose low 24 000 Zero g 65 Maneuver time (s) (a) What is the aircraft's speed (in m/s) at the top of the parabolic arc? 110.0 m/s (b) What is the aircraft's altitude (in ft) at the top of the parabolic arc? 2.04e+04 What is the initial height at the start of the parabolic arc? What is the initial velocity at this point? What is the final…arrow_forward
- 12. What could we conclude if a system has a phase trajectory that sweeps out larger and larger area as time goes by?arrow_forwardneed help part darrow_forwardA cab driver heads south with a steady speed of v₁ = 20.0 m/s for t₁ = 3.00 min, then makes a right turn and travels at v₂ = 25.0 m/s for t₂ = 2.80 min, and then drives northwest at v3 = 30.0 m/s for t3 = 1.00 min. For this 6.80-min trip, calculate the following. Assume +x is in the eastward direction. (a) total vector displacement (Enter the magnitude in m and the direction in degrees south of west.) magnitude direction For each straight-line movement, model the car as a particle under constant velocity, and draw a diagram of the displacements, labeling the distances and angles. Let the starting point be the origin of your coordinate system. Use the relationship speed = distance/time to find the distances traveled during each segment. Write the displacement vector, and calculate its magnitude and direction. Don't forget to convert min to s! m Model the car as a particle under constant velocity, and draw a diagram of the displacements, labeling the distances and angles. Let the…arrow_forward
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168161/9781938168161_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781111794378/9781111794378_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)