Physics for Scientists and Engineers
Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 26, Problem 52P

(a)

To determine

Whether the magnetic moment of the coil make angle with the unit vector i^ .

(a)

Expert Solution
Check Mark

Answer to Problem 52P

The coil makes an angle of i^ with the y axis.

Explanation of Solution

Given:

The given diagram is shown in Figure 1

  Physics for Scientists and Engineers, Chapter 26, Problem 52P

Figure 1

Calculation:

The angel that the coil makes with the y axis is n^ and the normal is drawn to the coil along the x axis.

In the Figure 1, the angel that the coil makes with y axis is i^ . The normal drawn to the coil have an angle j^ below the positive x-axis.

Conclusion:

Therefore, the coil makes an angle of i^ with the y axis.

(b)

To determine

The expression for n^ in terms of other unit vectors.

(b)

Expert Solution
Check Mark

Answer to Problem 52P

The expression for n^ is 0.8i^0.6j^ .

Explanation of Solution

Given:

The angle θ is 37° .

Formula:

The normal drawn to the coil in the plane of positive x and negative y direction and the expression for n^ is given by,

  n^=nxi^nyj^=cosθi^sinθj^

Calculation:

The value of n^ is calculated as,

  n^=cos(37°)i^sin(37°)j^=0.799i^0.692j^=0.8i^0.6j^

Conclusion:

Therefore, the expression for n^ is 0.8i^0.6j^ .

(c)

To determine

The magnetic moment of the coil.

(c)

Expert Solution
Check Mark

Answer to Problem 52P

The value of the magnetic field is (0.4185Nm)k^ .

Explanation of Solution

Given:

The length of the coil l is 5.00cm

The width of the coil w is 8cm .

The current I in the loop is 1.75A .

The magnetic field density B is 1.5T .

Formula:

The expression for the area of the loop is given by,

  A=lw

The expression to determine the value of μ is given by,

  μ=INAn^

The expression to determine the magnetic moment of the coil is given by,

  τ=μ×B

Calculation:

The area of the loop is calculated as,

  A=lw=(5cm)(8cm)=40cm2

The value of μ is calculated as,

  μ=INAn^=(1.75A)(40 cm2)(50)(0.799i^0.692j^)=(0.279Am2)i^(0.21Am2)j^

The magnetic moment of the coil is calculated as,

  τ=μ×B=[(0.279A m 2)i^(0.21A m 2)j^]×[1.5T]j^=(0.4185Nm)k^

Conclusion:

Therefore, the value of the magnetic moment is (0.4185Nm)k^ .

(d)

To determine

The torque on the coil when the magnetic field is constant.

(d)

Expert Solution
Check Mark

Answer to Problem 52P

The torque on the coil is 0.315J .

Explanation of Solution

Formula:

The expression for the torque on the coil is given by,

  U=μB

Calculation:

The value of the torque on the coil is calculated as,

  U=μB=[(0.279A m 2)i^(0.21A m 2)j^](1.5T)j^=0.315J

Conclusion:

Therefore, the torque on the coil is 0.315J .

(e)

To determine

The potential energy of the coil.

(e)

Expert Solution
Check Mark

Answer to Problem 52P

The potential energy of the coil is 0.315J .

Explanation of Solution

Formula:

The expression to determine the potential energy of the coil is given by,

  U=μB

Calculation:

The potential energy of the coil is calculated as,

  U=μB=[(0.279A m 2)i^(0.21A m 2)j^](1.5T)j^=0.315J

Conclusion:

Therefore, the potential energy of the coil is 0.315J .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
(a) Consider an infinite wire of radius a that carries a current I(t) = Io cos cot When separated into two pieces with a small gap of d <<< a, you would not notice that it is broken when looking from a very far distance. Explain this phenomenon by using the displacement current and electric field in the gap of the broken wire.
A toroidal solenoid with 200 turns of wire and a mean radiusof 3.0 cm carries a current of 0.3 A. The relative permeability of the coreis 100. (a) What is the magnetic field in the core? (b) What part of themagnetic field is due to atomic currents? diagram must be included if needed please
Given that the applied field is H = 5 x 104 amp . m-1, calculate the magnetization In Ge ; also the magnetic induction. the value of susceptibility is follow

Chapter 26 Solutions

Physics for Scientists and Engineers

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    University Physics Volume 2
    Physics
    ISBN:9781938168161
    Author:OpenStax
    Publisher:OpenStax
    Text book image
    Modern Physics
    Physics
    ISBN:9781111794378
    Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
    Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY