Concept explainers
To Choose: The correct option.
Answer to Problem 1P
Correct choice is (b)
Explanation of Solution
Introduction:
Magnetic force on a moving charged particle moving through a magnetic field region is given as
Clearly, the direction of deflection of the charged particle is given by the direction of the cross-product of velocity of the charged particle and magnetic field vector.
Direction of deflection of the electron is same as the direction of the magnetic force on it. For a positive charge, the direction of deflection is same as you get for the magnetic force using right hand rule but for a negative charge, the direction of deflection is opposite to the direction of magnetic forceyou will get using right hand rule.
Conclusion:
Hence, correct choice of path is (b)
Want to see more full solutions like this?
Chapter 26 Solutions
Physics for Scientists and Engineers
- A proton precesses with a frequency p in the presence of a magnetic field. If the intensity of the magnetic field is doubled, what happens to the precessional frequency?arrow_forwardAn electron of kinetic energy 2000 eV passes between parallel plates that are 1.0 an apart and kept at a potential difference of 300 V. What is the strength of the uniform magnetic field B that will allow the electron to travel undeflected through the plates? Assume E and B are perpendicular.arrow_forwardA mass spectrometer (Fig. 30.40, page 956) operates with a uniform magnetic field of 20.0 mT and an electric field of 4.00 103 V/m in the velocity selector. What is the radius of the semicircular path of a doubly ionized alpha particle (ma = 6.64 1027 kg)?arrow_forward
- Two long coaxial copper tubes, each of length L, are connected to a battery of voltage V. The inner tube has inner radius o and outer radius b, and the outer tube has inner radius c and outer radius d. The tubes are then disconnected from the battery and rotated in the same direction at angular speed of radians per second about their common axis. Find the magnetic field (a) at a point inside the space enclosed by the inner tube r d. (Hint: Hunk of copper tubes as a capacitor and find the charge density based on the voltage applied, Q=VC, C=20LIn(c/b) .)arrow_forwardCheck Your Understanding In what orientation would a magnetic dipole have to be to produce (a) a maximum torque in a magnetic field? (b) A maximum energy of the dipole?arrow_forwardAn electron is accelerated through 2.40 103 V from rest and then enters a uniform 1.70-T magnetic field. What are (a) the maximum and (b) the minimum values of the magnetic force this particle experiences?arrow_forward
- Is B constant in magnitude for points that lie on a magnetic field line?arrow_forwardGiven the identification of the particles in Figure 31.2b, is the direction of the external magnetic field in Figure 31.2a (a) into the page, (b) out of the page, (c) impossible to determine?arrow_forwardAssume the region to the right of a certain plane contains a uniform magnetic field of magnitude 1.00 mT and the field is zero in the region to the left of the plane as shown in Figure P22.71. An electron, originally traveling perpendicular to the boundary plane, passes into the region of the field. (a) Determine the time interval required for the electron to leave the field-filled region, noting that the electrons path is a semicircle. (b) Assuming the maximum depth of penetration into the field is 2.00 cm, find the kinetic energy of the electron.arrow_forward
- A proton moving in the plane of the page has a kinetic energy of 6.00 MeV. A magnetic field of magnitude H = 1.00 T is directed into the page. The proton enters the magnetic field with its velocity vector at an angle = 45.0 to the linear boundary of' the field as shown in Figure P29.80. (a) Find x, the distance from the point of entry to where the proton will leave the field. (b) Determine . the angle between the boundary and the protons velocity vector as it leaves the field.arrow_forwardWhen the current through a circular loop is 6.0 A, the magnetic field at its center is 2.0104 T. What is the radius of the loop?arrow_forwardIn the figure, an electron accelerated from rest through potential difference V₁-1.19 kV enters the gap between two parallel plates having separation d - 19.9 mm and potential difference V₂- 94.7 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap? Number (i k) Unitsarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning