
Conceptual Physical Science (6th Edition)
6th Edition
ISBN: 9780134060491
Author: Paul G. Hewitt, John A. Suchocki, Leslie A. Hewitt
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 26, Problem 49E
To determine
The shape of the nebula as it contracts and spins faster.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A ball is tied to one end of a string. The other end of the string is fixed. The ball is set in motion around a vertical circle without friction. At the top of the circle, the ball has a speed of ; = √√ Rg, as shown in the figure. At what angle should the string be cut so that the ball will travel
through the center of the circle?
The path
after string
is cut
R
(a) A luggage carousel at an airport has the form of a section of a large cone, steadily rotating about its vertical axis. Its metallic
surface slopes downward toward the outside, making an angle of 24.5° with the horizontal. A 30.0-kg piece of luggage is placed on
the carousel, 7.46 m from the axis of rotation. The travel bag goes around once in 37.5 s. Calculate the magnitude of the force of
static friction between the bag and the carousel.
Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. N
(b) The drive motor is shifted to turn the carousel at a higher constant rate of rotation, and the piece of luggage is bumped to a
position 7.94 m from the axis of rotation. The bag is on the verge of slipping as it goes around once every 30.5 s. Calculate the
coefficient of static friction between the bag and the carousel.
Your response differs significantly from the correct answer. Rework your solution from the…
(a) Imagine that a space probe could be fired as a projectile from the Earth's surface with an initial speed of 5.78 x 104 m/s relative
to the Sun. What would its speed be when it is very far from the Earth (in m/s)? Ignore atmospheric friction, the effects of other
planets, and the rotation of the Earth. (Consider the mass of the Sun in your calculations.)
Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your
calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. m/s
(b) What If? The speed provided in part (a) is very difficult to achieve technologically. Often, Jupiter is used as a "gravitational
slingshot" to increase the speed of a probe to the escape speed from the solar system, which is 1.85 x 104 m/s from a point on
Jupiter's orbit around the Sun (if Jupiter is not nearby). If the probe is launched from the Earth's surface at a speed of
4.10 x 10 m/s relative…
Chapter 26 Solutions
Conceptual Physical Science (6th Edition)
Ch. 26 - How many known planets are in our solar system?Ch. 26 - What dwarf planet was downgraded from planetary...Ch. 26 - How are the outer planets different from the inner...Ch. 26 - Why does a nebula spin faster as it contracts?Ch. 26 - According to the nebular theory, did the planets...Ch. 26 - Prob. 6RCQCh. 26 - What are sunspots?Ch. 26 - What is the solar wind?Ch. 26 - How does the rotation of the Sun differ from the...Ch. 26 - Prob. 10RCQ
Ch. 26 - Why are the days on Mercury very hot and the...Ch. 26 - What two planets are evening or morning stars?Ch. 26 - Why is Earth called the blue planet?Ch. 26 - What gas makes up most of the Martian atmosphere?Ch. 26 - What evidence tells us that Mars was at one time...Ch. 26 - What surface feature do Jupiter and the Sun have...Ch. 26 - Which move faster: Saturns inner rings or the...Ch. 26 - How tilted is Uranuss axis?Ch. 26 - Why is Nepcune bluer than Uranus?Ch. 26 - Why doesnt the Moon have an atmosphere?Ch. 26 - Where is the Sun located when you view a fall...Ch. 26 - Where are the Sun and the Moon located at the time...Ch. 26 - Why dont eclipses occur monthly, or nearly...Ch. 26 - How does the Moons rate of rotation about its own...Ch. 26 - Between the orbits of what two planets is the...Ch. 26 - What is the difference between a meteor and a...Ch. 26 - What is the Kuiper belt?Ch. 26 - What is the Oort cloud, and what is it noted for?Ch. 26 - Prob. 29RCQCh. 26 - What causes comet tails to point away from the...Ch. 26 - Knowing that the speed of light is 300,000 km/s,...Ch. 26 - How many days does sunlight take to travel the...Ch. 26 - The light-year is a standard unit of distance used...Ch. 26 - The nearest star to our Sun is Alpha Centauri,...Ch. 26 - If the Sun were the size of a beach ball, Earth...Ch. 26 - Rank these planets in order from longest to...Ch. 26 - Rank these planets in order of increasing number...Ch. 26 - Rank in order of increasing average density: (a)...Ch. 26 - Rank in order of increasing pressure at the center...Ch. 26 - Rank in order of decreasing number of people who...Ch. 26 - Rank in order of increasing average distance from...Ch. 26 - According to the nebular theory, what happens to a...Ch. 26 - Prob. 49ECh. 26 - When a contracting ball of hot gas spins into a...Ch. 26 - If Earth didnt spin on its axis but still revolved...Ch. 26 - If Earth didnt spin on its axis but still revolved...Ch. 26 - Which tends to be larger: a star or a nebula?...Ch. 26 - Prob. 54ECh. 26 - Prob. 55ECh. 26 - Prob. 56ECh. 26 - Explain why the radiation zone is more dense than...Ch. 26 - Explain how energy is transported from the Sun's...Ch. 26 - Explain how energy is transported outward through...Ch. 26 - The greenhouse effect is very pronounced on Venus...Ch. 26 - What is the cause of winds on Mars (and also on...Ch. 26 - Why is there so little wind on the surface of...Ch. 26 - If Venus were somehow transported into the...Ch. 26 - Mercury and Venus are never seen at night straight...Ch. 26 - As evidenced in the photos that make up Figure...Ch. 26 - What is the major difference between the...Ch. 26 - What does Jupiter have in common with the Sun that...Ch. 26 - When it comes to celestial bodies,such as planets...Ch. 26 - Why are the seasons on Uranus different from the...Ch. 26 - Do all moons orbit in the same direction as the...Ch. 26 - Earth rotates much faster than Venus. How does the...Ch. 26 - Why are many craters evident on the surface of the...Ch. 26 - Why is there no atomosphere on the Moon? Defend...Ch. 26 - Is the fact that we see only one side of the Moon...Ch. 26 - Photograph (a) shows the Moon partially lit by the...Ch. 26 - We always see the same face of the Moon because...Ch. 26 - Since we never see the back side of the Moon,...Ch. 26 - In what alignment of Sun, Moon, and Earth does a...Ch. 26 - In what alignment of Sun, Moon, and Earth does a...Ch. 26 - What does the Moon have in common with a compass...Ch. 26 - If you were on the Moon and you looked up and saw...Ch. 26 - If you were on the Moon and you looked up and saw...Ch. 26 - Earth takes 365.25 days to revolve around the Sun....Ch. 26 - Astronomer using land-based telescopes must...Ch. 26 - Nearly everybody has witnessed a lunar eclipse,...Ch. 26 - Because of Earth's shadow, a partially eclipsed...Ch. 26 - Use the following illustration to answer questions...Ch. 26 - Use the following illustration to answer questions...Ch. 26 - Use the following illustration to answer questions...Ch. 26 - Use the following illustration to answer questions...Ch. 26 - In what sense is Pluto a potential comet?Ch. 26 - Smaller chunks of asteroids are sent hurling...Ch. 26 - Why are meteorites so much more easily found in...Ch. 26 - A meteor is visible only once, but a comet may be...Ch. 26 - What would be the consequence of a comets tail...Ch. 26 - Chances are about 50-50 that in any night sky,...Ch. 26 - If the bulk of water on Earth didnt come from...Ch. 26 - Consider what human civilization would be like if...Ch. 26 - What are the chances that microbial life forms...Ch. 26 - Prob. 100DQCh. 26 - Prob. 1RATCh. 26 - The solar system is like an atom in that both (a)...Ch. 26 - The nebular theory is based on the observation...Ch. 26 - When a contracting hot ball of gas spins into a...Ch. 26 - Each second, the burning Sun's mass (a) increases....Ch. 26 - Compared to your weigh on Earth, your weight on...Ch. 26 - When the Moon assumes its characteristic thin...Ch. 26 - When the Sun passes between the Moon and Earth, we...Ch. 26 - Asteroids orbit (a) the Moon. (b) Earth. (c) the...Ch. 26 - With each pass of a comet about the Sun, the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- As shown in the figure, a roller-coaster track includes a circular loop of radius R in a vertical plane. A car of mass m is released from rest at a height h above the bottom of the circular section and then moves freely along the track with negligible energy loss due to friction. i (a) First suppose the car barely makes it around the loop; at the top of the loop, the riders are upside down and feel weightless. Find the required height h of the release point above the bottom of the loop. (Use any variable or symbol stated above along with the following as necessary: g.) h = (b) If the car is released at some point above the minimum required height, determine the amount by which the normal force on the car at the bottom of the loop exceeds the normal force on the car at the top of the loop. (Consider the moments when the car reaches the top and when it reaches the bottom again. Use any variable or symbol stated above along with the following as necessary: g.) NB - NT = The normal force…arrow_forwardOne of the more challenging elements in pairs figure skating competition is the "death spiral" (see the figure below), in which the female figure skater, balanced on one skate, is spun in a circle by the male skater. i The axis of rotation of the pair is vertical and through the toe of the skate on the male skater's leg that is bent backward, the toe being planted into the ice. During the one-armed maneuver first developed in the 1940s, the outstretched arm of the male skater must apply a large force to support a significant fraction of the female skater's weight and also to provide her centripetal acceleration. This force represents a danger to the structure of the wrist of the male skater. (a) Modeling the female skater, of mass 47.0 kg, as a particle, and assuming that the combined length of the two outstretched arms is 129 cm and that arms make an angle of 45.0° with the horizontal, what is the magnitude of the force (in N) exerted by the male skater's wrist if each turn is…arrow_forwardOne popular design of a household juice machine is a conical, perforated stainless steel basket 3.30 cm high with a closed bottom of diameter 8.00 cm and open top of diameter 14.40 cm that spins at 16000 revolutions per minute about a vertical axis. Solid pieces of fruit are chopped into granules by cutters at the bottom of the spinning cone. Then the fruit granules rapidly make their way to the sloping surface where the juice is extracted to the outside of the cone through the mesh perforations. The dry pulp spirals upward along the slope to be ejected from the top of the cone. The juice is collected in an enclosure immediately surrounding the sloped surface of the cone. Pulp Motor Spinning basket Juice spout (a) What centripetal acceleration does a bit of fruit experience when it is spinning with the basket at a point midway between the top and bottom? m/s² ---Direction--- (b) Observe that the weight of the fruit is a negligible force. What is the normal force on 2.00 g of fruit at…arrow_forward
- A satellite is in a circular orbit around the Earth at an altitude of 3.88 × 106 m. (a) Find the period of the orbit. (Hint: Modify Kepler's third law so it is suitable for objects orbiting the Earth rather than the Sun. The radius of the Earth is 6.38 × 106 m, and the mass of the Earth is 5.98 x 1024 kg.) h (b) Find the speed of the satellite. km/s (c) Find the acceleration of the satellite. m/s² toward the center of the eartharrow_forwardShown below is a waterslide constructed in the late 1800's. This slide was unique for its time due to the fact that a large number of small wheels along its length made friction negligible. Riders rode a small sled down the chute which ended with a horizontal section that caused the sled and rider to skim across the water much like a flat pebble. The chute was 9.76 m high at the top and 54.3 m long. Consider a rider and sled with a combined mass of 81.0 kg. They are pushed off the top of the slide from point A with a speed of 2.90 m/s, and they skim horizontally across the water a distance of 50 m before coming to rest. 9.76 m Engraving from Scientific American, July 1888 A (a) 20.0 m/ -54.3 m- 50.0 m (b) (a) Find the speed (in m/s) of the sled and rider at point C. 14.14 m/s (b) Model the force of water friction as a constant retarding force acting on a particle. Find the magnitude (in N) of the friction force the water exerts on the sled. 162.2 N (c) Find the magnitude (in N) of the…arrow_forwardA small object with mass 3.60 kg moves counterclockwise with constant angular speed 1.40 rad/s in a circle of radius 2.55 m centered at the origin. It starts at the point with position vector 2.551 m. Then it undergoes an angular displacement of 9.15 rad. (a) What is its new position vector? m (b) In what quadrant is the object located and what angle does its position vector make with the positive x-axis? ---Select--- ✓ at (c) What is its velocity? m/s (d) In what direction is it moving? (Give a negative angle.) ° from the +x direction. (e) What is its acceleration? m/s² (f) What total force is exerted on the object? Narrow_forward
- A spring with unstretched length of 14.3 cm has a spring constant of 4.63 N/m. The spring is lying on a horizontal surface, and is attached at one end to a vertical post. The spring can move freely around the post. The other end of the spring is attached to a puck of mass m. The puck is set into motion in a circle around the post with a period of 1.32 s. Assume the surface is frictionless, and the spring can be described by Hooke's law. (a) What is the extension of the spring as a function of m? (Assume x is in meters and m is in kilograms. Do not include units in your answer.) x = Your answer cannot be understood or graded. More Information x Find x (in meters) for the following masses. (If not possible, enter IMPOSSIBLE.) (b) m = 0.0700 kg x Use your result from part (a), and insert the given value for m. m (c) m 0.140 kg × Use your result from part (a), and insert the given value for m. m (d) m = 0.180 kg x Use your result from part (a), and insert the given value for m. m (e) m =…arrow_forwardA spacecraft in the shape of a long cylinder has a length of 100 m, and its mass with occupants is 1 860 kg. It has strayed too close to a black hole having a mass 98 times that of the Sun. The nose of the spacecraft points toward the black hole, and the distance between the nose and the center of the black hole is 10.0 km. 100 m- 10.0 km Black hole (a) Determine the total force on the spacecraft. The total force is determined by the distance from the black hole to the center of gravity of the ship which will be close to the midpoint. N (b) What is the difference in the gravitational fields acting on the occupants in the nose of the ship and on those in the rear of the ship, farthest from the black hole? (This difference in acceleration grows rapidly as the ship approaches the black hole. It puts the body of the ship under extreme tension and eventually tears it apart.) N/kg 2.56e+12arrow_forwardQ1: Find the volume of the object shown to the correct number of significant figures. ( 22.37 cm 9.10 cm 85.75 cm Q2: One Astronomical Unit (A.U.) is the average distance that the Earth orbits the Sun and is equal to 1.4960 × 1011 m. The Earth moves 2 A.U. in one year, what is this speed in SI units? ( Q3: Suppose a well known professor Raitman discovers Raitman's Law which states v = Br²/at², what are the SI units of the B parameter if r,v,a, and t are displacement, velocity, acceleration, and time, respectively? (arrow_forward
- Because you are taking physics, your friend asks you to explain the detection of gravity waves that was made by LIGO in early 2016. (See the section that discusses LIGO.) To do this, you first explain about Einstein's notion of large masses, like those of stars, causing a curvature of spacetime. (See the section on general relativity.) To demonstrate, you put a bowling ball on your bed, so that it sinks downward and creates a deep depression in the mattress. Your sheet has a checked pattern that provides a nice coordinate system, as shown in the figure below. This is an example of a large mass (the bowling ball) creating a curvature of a flat, two-dimensional surface (the mattress) into a third dimension. (Spacetime is four dimensional, so its curvature is not easily visualized.) Then, you are going to amaze your friend by projecting a marble horizontally along a section of the sheet surface that is curved downward by the bowling ball so that the marble follows a circular path, as…arrow_forwardQ6: Water in a river 1.6 km wide flows at a speed of 6.0 km h−1. A captain attempts to cross the river in his ferry at right angles to the bank but by the time it has reached the opposite bank the captain awakes and notices that it is 1.0 km downstream. If the captain wishes to take his boat directly across, what angle upstream must he point the boat assuming the boat speed remains the same? ( Q7: A student whirls a red-brown rubber stopper of mass 50 g on the end of a nylon string in a horizontal clockwise circle of diameter 1.2 m (as seen from above) at a constant speed of 8 m s-1. From an instant when the stopper is moving in a northerly direction, find its change in velocity after moving round (a) one-half of a revolution; (b) one-quarter of a revolution; (c) one-tenth of a revolution.arrow_forwardQ9: When a wedding ring is thrown horizontally out of a fifth-floor window 15 m off the ground, it lands 7.5 m out from the base of the building. Calculate the throwing speed; (a) (b) the impact velocity; (c) how long the marriage will last. Q10: A girl on a sled with a combined mass of 50.0- kg slides down a frictionless hill from rest. When she gets to the bottom of the hill, she is traveling at 3.00 m/s. How high is the hill?" m = 50.0 kg HILL v, 3.00 m/s ■ 0 (ground)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning

Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning

Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning


An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax

Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning