Use differential approximations in the following problems . 47. Average cost. For a company that manufactures tennis rackets, the average cost per racket C ¯ is C ¯ = 400 x + 5 + 1 2 x x ≥ 1 where x is the number of rackets produced per hour. What will the approximate change in average cost per racket be if production is increased from 20 per hour to 25 per hour? From 40 per hour to 45 per hour?
Use differential approximations in the following problems . 47. Average cost. For a company that manufactures tennis rackets, the average cost per racket C ¯ is C ¯ = 400 x + 5 + 1 2 x x ≥ 1 where x is the number of rackets produced per hour. What will the approximate change in average cost per racket be if production is increased from 20 per hour to 25 per hour? From 40 per hour to 45 per hour?
Use differential approximations in the following problems.
47. Average cost. For a company that manufactures tennis rackets, the average cost per racket
C
¯
is
C
¯
=
400
x
+
5
+
1
2
x
x
≥
1
where x is the number of rackets produced per hour. What will the approximate change in average cost per racket be if production is increased from 20 per hour to 25 per hour? From 40 per hour to 45 per hour?
a) Find the scalars p, q, r, s, k1, and k2.
b) Is there a different linearly independent eigenvector associated to either k1 or k2? If yes,find it. If no, briefly explain.
Plz no chatgpt answer Plz
Will upvote
1/ Solve the following:
1 x +
X + cos(3X)
-75
-1
2
2
(5+1) e
5² + 5 + 1
3 L
-1
1
5² (5²+1)
1
5(5-5)
Chapter 2 Solutions
Pearson eText for Calculus for Business, Economics, Life Sciences, and Social Sciences, Brief Version -- Instant Access (Pearson+)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY