The proper time interval of the rocket ship adventure.
Calculation:
To the captain’s frame:
The flashlight flash as measured by the captain can be found
To the space dock frame:
Suppose if the flashlight is flashes in the space dock and the flashes are recorded by the space dock personal is the proper value and is 1 s
The flashlight flash as measured by the captain is the time dilation value and its value is
Analysis of options:
Option a: 1.15 s:
This is not the right answer.
This gives the time dilation value relative to the space dock. So, it is wrong.
Option b: Every 1.00 s:
Hence, it is the wrong answer.
This is measured by the space dock personal and it would be the proper time if the event was held in the space dock. But in our problem statement, it is being held in the rocket. So, it is wrong.
Option c: 0.87 s.:
It is the correct answer.
This is the proper time interval, as calculated above. It is measured by the captain of the rocket the flash light has been flashed from the rocket only. Hence, it is the correct answer.
Option d: 0.13 s:
The proper time and the time interval measured from another reference differ by a factor . The above value does not hold this. Hence, it is the wrong answer.
Want to see the full answer?
Check out a sample textbook solutionChapter 26 Solutions
Physics: Principles with Applications
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON