![EBK PHYSICS FOR SCIENTISTS AND ENGINEER](https://www.bartleby.com/isbn_cover_images/9781305804463/9781305804463_largeCoverImage.jpg)
Concept explainers
(i) Rank the following five capacitors from greatest to smallest capacitance, noting any cases of equality, (a) a 20-μF capacitor with a 4-V potential difference between its plates (b) a 30-μF capacitor with charges of magnitude 90 μC on each plate (c) a capacitor with charges of magnitude 80 μC on its plates, differing by 2 V in potential. (d) a 10-μF capacitor storing energy 125 μJ (e) a capacitor storing energy 250 μJ with a 10-V potential difference (ii) Rank the same capacitors in part (i) from largest to smallest according to the potential difference between the plates, (iii) Rank the capacitors in part (i) in the order of the magnitudes of the charges on their plates, (iv) Rank the capacitors in part (i) in the order of the energy they store.
(i)
![Check Mark](/static/check-mark.png)
The rank of the five capacitors from greatest to smallest capacitance.
Answer to Problem 26.12OQ
The rank of the five capacitors from greatest to smallest capacitance is
Explanation of Solution
Given info: The capacitances of the cases (a), (b) and (d) are
Formula to calculate the capacitance of the capacitor is,
Here,
For case (a):
The capacitance of the first capacitor is,
Here,
For case (b):
The capacitance of the second capacitor is,
Here,
For case (c):
The capacitance of the third capacitor is,
Here,
Substitute
Thus, the capacitance of the third capacitor is
For case (d):
The capacitance of the fourth capacitor is,
Here,
For case (e):
Formula to calculate the energy stored in a capacitor is,
Here,
Substitute
Thus, the capacitance of the fifth capacitor is
The rank of the capacitor is,
Conclusion:
Therefore, the rank of the five capacitors from greatest to smallest capacitance is
(ii)
![Check Mark](/static/check-mark.png)
The rank of the five capacitors from greatest to smallest capacitance according to the potential difference between plates.
Answer to Problem 26.12OQ
The rank of the five capacitors from greatest to smallest capacitance according to the potential difference between plates is
Explanation of Solution
Given info: The capacitances of the cases (a), (b) and (d) are
For case (a):
The electric potential across the first capacitor is,
For case (b):
The electric potential for across the second capacitor is,
Substitute
Thus, the electric potential for across the second capacitor is
For case (c):
The electric potential for across the third capacitor is,
Here,
For case (d):
Formula to calculate the energy stored in the fourth capacitor is,
Here,
Substitute
Thus, the energy stored in the fourth capacitor
For case (e):
The electric potential across the fifth capacitor is,
Here,
The rank of the electric potential from highest to lowest is,
From the above expression, the capacitance of the capacitor is inversely proportional to the square of voltage. Hence, the rank of the five capacitors from greatest to smallest capacitance according to the potential difference between plates is
Conclusion:
Therefore, the rank of the five capacitors from greatest to smallest capacitance according to the potential difference between plates is
(iii)
![Check Mark](/static/check-mark.png)
The rank of the five capacitors from greatest to smallest capacitance in the order of the magnitude of charge is
Answer to Problem 26.12OQ
The rank of the five capacitors from greatest to smallest capacitance in the order of the magnitude of charge is
Explanation of Solution
Given info: The capacitances of the cases (a), (b) and (d) are
For case (a):
The charge across the first capacitor is,
Here,
Substitute
Thus, the charge across the first capacitor is
For case (b):
The charge across the second capacitor is,
Here,
Thus, the charge across the second capacitor is
For case (c):
The charge across the third capacitor is,
Here,
Thus, the charge across the second capacitor is
For case (d):
Formula to calculate the energy stored in the fourth capacitor is,
Here,
Substitute
Thus, the charge across the fourth capacitor is
For case (e):
Formula to calculate the energy stored in the fifth capacitor is,
Substitute
Thus, the magnitude of the fifth capacitor is
The charge across the fifth capacitor is,
Here,
Substitute
Thus, the charge across the fifth capacitor is
The rank of the charge from highest to lowest is,
Since, the capacitance of the capacitor is proportional to the charge. Hence, the rank of the five capacitors from greatest to smallest capacitance in the order of the magnitude of charge is
Conclusion:
Therefore, the rank of the five capacitors from greatest to smallest capacitance in the order of the magnitude of charge is
(iv)
![Check Mark](/static/check-mark.png)
The rank of energy stored of the five capacitors from greatest to smallest capacitance.
Answer to Problem 26.12OQ
The rank of energy stored of the five capacitors from greatest to smallest capacitance is
Explanation of Solution
Given info: The capacitances of the cases (a), (b) and (d) are
For case (a):
The energy stored of the first capacitor is,
Here,
Thus, the energy stored of the first capacitor is
For case (b):
The energy stored of the first capacitor is,
Here,
Substitute
Thus, the energy stored of the second capacitor is
For case (c):
The energy stored of the third capacitor is,
Here,
Substitute
Thus, the energy stored of the third capacitor is
For case (d):
The energy stored of the fourth capacitor is,
Here,
Thus, the energy stored of the fourth capacitor is
For case (e):
The energy stored of the fifth capacitor is,
Here,
Thus, the energy stored of the fourth capacitor is
The rank of the charge from highest to lowest is,
Conclusion:
Therefore, the rank of energy stored of the five capacitors from greatest to smallest capacitance is
Want to see more full solutions like this?
Chapter 26 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Car P moves to the west with constant speed v0 along a straight road. Car Q starts from rest at instant 1, and moves to the west with increasing speed. At instant 5, car Q has speed w0 relative to the road (w0 < v0). Instants 1-5 are separated by equal time intervals. Sketch and label a vector diagram illustrating the Galilean transformation of velocities that relates velocity of car P relative to the road, velocity of car Q relative to road, and velocity of car Q relative to car P at instant 3. In the frame of car P, at instant 3 is car Q moving to the west, moving to the east, or at rest? Explain.arrow_forwardJust 5 and 6 don't mind 7arrow_forwardIn an electron gun, electrons are accelerated through a region with an electric field of magnitude 1.5 × 104 N/C for a distance of 2.5 cm. If the electrons start from rest, how fast are they moving after traversing the gun?arrow_forward
- Please solve and answer this problem correctly please. Thank you!!arrow_forwardPlease solve and answer this problem correctly please. Thank you!!arrow_forwarda) Use the node-voltage method to find v1, v2, and v3 in the circuit in Fig. P4.14. b) How much power does the 40 V voltage source deliver to the circuit? Figure P4.14 302 202 w w + + + 40 V V1 80 Ω 02 ΣΑΩ 28 A V3 + w w 102 202arrow_forward
- Please solve and answer this problem correctly please. Thank you!!arrow_forwardYou're on an interplanetary mission, in an orbit around the Sun. Suppose you make a maneuver that brings your perihelion in closer to the Sun but leaves your aphelion unchanged. Then you must have Question 2 options: sped up at perihelion sped up at aphelion slowed down at perihelion slowed down at aphelionarrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forward
- The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forwardNo chatgpt pls will upvotearrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168161/9781938168161_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285737027/9781285737027_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)