Power Rating of a Resistor. The power rating of a resistor is the maximum power the resistor can .safely dissipate without too great a rise in temperature and hence damage to the resistor, (a) If the power rating of a 15-k Ω resistor is 5.0 W, what is the maximum allowable potential difference across the terminals of the resistor? (b) A 9.0-kΩ resistor is to be connected across a 120-V potential difference. What power rating is required? (c) A 100.0-Ω and a 150.0-Ω resistor, both rated at 2.00 W, are connected in series across a variable potential difference. What is the greatest this potential difference can be without overheating either resistor, and what is the rate of heat generated in each resistor under these conditions?
Power Rating of a Resistor. The power rating of a resistor is the maximum power the resistor can .safely dissipate without too great a rise in temperature and hence damage to the resistor, (a) If the power rating of a 15-k Ω resistor is 5.0 W, what is the maximum allowable potential difference across the terminals of the resistor? (b) A 9.0-kΩ resistor is to be connected across a 120-V potential difference. What power rating is required? (c) A 100.0-Ω and a 150.0-Ω resistor, both rated at 2.00 W, are connected in series across a variable potential difference. What is the greatest this potential difference can be without overheating either resistor, and what is the rate of heat generated in each resistor under these conditions?
Power Rating of a Resistor. The power rating of a resistor is the maximum power the resistor can .safely dissipate without too great a rise in temperature and hence damage to the resistor, (a) If the power rating of a 15-k Ω resistor is 5.0 W, what is the maximum allowable potential difference across the terminals of the resistor? (b) A 9.0-kΩ resistor is to be connected across a 120-V potential difference. What power rating is required? (c) A 100.0-Ω and a 150.0-Ω resistor, both rated at 2.00 W, are connected in series across a variable potential difference. What is the greatest this potential difference can be without overheating either resistor, and what is the rate of heat generated in each resistor under these conditions?
help me with this and the step I am so confused. It should look something like the figure i shown
Part A
In an effort to stay awake for an all-night study
session, a student makes a cup of coffee by first
placing a 200 W electric immersion heater in
0.250 kg of water.
How much heat must be added to the water to raise its temperature from 20.5° C to 95.0°C?
Express your answer in joules.
ΕΠΙ ΑΣΦ
Q
Submit
Request Answer
Part B
?
J
How much time is required? Assume that all of the heater's power goes into heating the water.
Express your answer in seconds.
VG ΑΣΦ
?
t =
S
help i dont understand this it should look like something like this picture. help me with the steps
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY